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1. Executive Summary 
 
Fires cause massive environmental damage. This damage can be in the form of physical 
damages but also the monetary value of all the structures and items it destroys. Timely 
response to a fire is key as the sooner a team can be assembled to fight the fire the less 
damage that occurs. The F.I.R.E. system’s goal is to detect fires and send alerts about 
the fire across large distances so that response teams can be brought together swiftly. 
This allows cities, states, and governments to effectively and efficiently monitor forests 
and large expanses of land for fires and alert a location that could be many miles away 
from the starting point of the fire. The system uses new wireless technology combined 
with machine learning and image processing techniques to determine if there is a fire in 
its vicinity and send an alert across the network. Creating a mesh network, the system 
will send alerts to all other systems and these notifications will get filtered through the 
system to a central location so that the alert can be handled. Using newer wireless 
technology LoRa and the power of machine learning, the system will accurately and 
efficiently monitor these large areas and assist in preventing the devastation caused by 
a fire. 

 

2. Product Description 
 
The following sections cover items relating to the product. The motivation, goals, and 
objectives preface everything as the project must fall back on them to complete its goal. 
Furthermore, this section covers the Requirements for the system and the “House of 
Quality” which helps product development by showing the relationship between customer 
requirements and design requirements. 
 

2.1. Motivation 
 
Over 100,000 forest fires have occurred worldwide. In the past, forest fires were 
considered a natural cycle and were ignored (Ouni, Ayoub, & Kamoun, 2019; Jurvélius, 
2003). However, with increasing awareness emphasizing the preservation of natural 
resources, as well as recent forest fires, have put forest fires at the forefront of global 
environmental concerns especially due to the fires Australia in 2001 and 2002 and USA 
in 2002 (Jurvélius, 2003). Forest fires not only increase the levels of carbon dioxide in the 
atmosphere, but also burn vegetation and plants that act as nature’s CO2 sinks. 
 
The increased carbon dioxide impacts air quality leading to smog and escalates the rate 
of global warming (Alkhatib, 2017; United Nations Enviroment Programme, 2020). In 
addition, humans and endangered animals’ fatalities have been reported due to forest 
fires. As a result, forest fire detection and monitoring systems have sparked the interests 
of scientists and researchers worldwide. 
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The purpose of this project is to design and build a solar powered forest fire detection and 
monitoring system that will serve as a preventive measure for forest fires. This device 
would ideally be used in areas where human activity is present such as campsites 
especially parts of the forest that are highly susceptible to forest fires. This device can 
also be used to monitor and detect forest fires to help researchers and firefighters 
determine incoming fires or the severity of the existing fires. Thus, the device is aimed for 
prevention and to facilitate extinction of forest fires. 

 

2.2. Goals and Objectives 
 
The main goal for this project is to design a system composed of devices whose main 
purpose is detecting and monitoring forest fires. The devices will be portable so that in 
can be mounted on trees and will be able to communicate and send data to the main hub 
where a forest ranger can monitor forest conditions. Moreover, the system can be 
calibrated to work under various forest environments.  

 
Hardware: The hardware of the system will include a solar panel system, power 
regulation system, sensors for flame, smoke, and gas detection, antenna and radio 
frequency hardware, and processor for network and sensor data.  
 
Software: There are two parts to the software of the system: Network and Fire Detection. 
The Network software will manage and maintain the network and allow for sending 
messages through the network to a “gateway”. The Fire Detection software will use 
sensor data to determine, through image processing and/or machine learning, if there is 
a fire. The two software sub-systems will communicate to know whether or not to send a 
message. 
 
Control: To process and control the data, the system will include a microcontroller and a 
raspberry pi that work together to achieve the goals of the system. The microcontroller 
will handle the wireless communication and joining and maintaining the network. The 
Raspberry Pi will handle sensor data and determine if there is a need to send a message 
across the network. 
 
Communication: A mesh network will be adopted for the monitoring system to allow the 
devices scattered in the forest to communicate dynamically and send data to be 
processed at the central hub.   
 
Power Supply: The system will be powered by solar panels mounted to the top of the 
tree connected to the individual device. Since each device will draw modest current, the 
solar system will be capable of supplying power and allowing the devices to function 
autonomously without significant human intervention.  
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2.3. Requirements and Specifications 
 
Table 1 and Table 2 below show the preliminary expected requirements and constraints 
as determined by the project specification. 

 
Table 1: Project Requirements 

 
Table 2: Project Constraints 

ID Category Requirement 

C1 Electrical The system shall use solar power when available instead of 
the battery 

C2 Mechanical The system shall not be bigger than a bird’s nest. (15 x 15 
x 15 cm) 

C3 Mechanical The system shall be mounted to a tree 

ID Category Requirement 

R1 System The system shall detect the presence of a fire within 100m 

R2 Electrical The system shall be able to draw power from a battery or 
solar panel at any time 

R3 Electrical The system shall charge a battery with solar panel 

R4 Electrical The system battery shall last 36 hours without charging 

R5 Electrical The system shall communicate wirelessly to nearby nodes 

R6 Software The system shall differentiate other nodes and determine 
how to send data to hub 

R7 Software The system shall read all sensors periodically and store 
data internally 

R8 Software The system shall process all sensor data to determine if a 
fire has started 

R9 Electrical The system shall read voltages of the battery to determine 
health 

R10 Software The system shall report its own status/health to the hub. 

R11 Software The system shall store configuration and user defined data 
in non-volatile memory 

R12 Mechanical The system shall withstand fires up to 4 hours 

R13 Mechanical The system shall be able to withstand normal weather 
conditions  

R14 Electrical The system shall monitor environment with temperature 
and humidity sensors 

R15 System Average installation time should not exceed 30 minutes 

R16 Mechanical The system shall be able to withstand normal weather 
conditions  

R17 Electrical The system shall verify environment with temperature and 
humidity sensors 
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2.4. House of Quality 
 
The house of quality is a product planning matrix that shows how customer requirements 
relate to engineering requirements (ASQ, 2020). The House of Quality is mostly used to 
identify the customer’s needs and improving the development engineers’ understanding 
of the customer’s intentions. By creating an understanding between the customer and the 
engineers who develop the product, the product is designed correctly and efficiently while 
maintaining the original “market” requirements that got the project started in the first place. 
Figure 1 below is our “House of Quality”. 
 

 
Figure  1: House of Quality 

 
Our House of Quality has four major relationships displayed. These four relationships are 
the cornerstone to our design. The most obvious relationship is the connection between 
the Cost of the product and the cost to design the product. If it costs us more money to 
design the project, then it will cost more money for a consumer to buy it. The next 
relationship is directly between reliability and cost. As the reliability increases, it stands to 
reason that the cost will also increase. This may be due to purchasing better materials or 
adding in additional components or modules to improve the reliability in the design. The 



5 
 

next relationship that matters greatly to the overall project is the inverse relationship of 
battery life and power usage which is directly related to design time. If the time to design 
this project is increased, it is likely that we will discover more efficient and better 
techniques to save on power consumption. With lower power consumption we will 
increase battery life. This relationship is important because it shows that with enough 
time, we can make a very efficient product. Other relationships exist on the House of 
Quality, but they are less “powerful” correlations than the four previously mentioned. 

3. Design Constraints and Standards 
 
Design Constraints and Standards are important to every project as they define how this 
project relates to the world around it. When a project follows a standard, others can define 
how the product behaves or is designed based on what kind of standard is followed. 
Furthermore, a product might be approved or denied in certain markets based on which 
standards it conforms to. Nonetheless, this section covers the constraints and standards 
that this project is designed to. 
 

3.1. Table of Standards 
 
The table below shows standards that could be applicable to the project and what part of 
the project would follow those standards. Regulations that could apply (i.e. from the FCC) 
will also be listed in this table. 
 
Table 3: Table of Standards and Regulations 

Standard or Regulation Application Where it applies 

RoHS – Directive 
2002/95/EC 

Restriction of using 
hazardous materials 

Entire Project 

IEEE C2-2012 Safeguarding persons 
from hazards during 
installation 

Entire Project – 
Mechanical Housing 

IPC-2220 (IPC-2221) Series of standards built 
around IPC-2221. Related 
to PCB design. 

Electrical PCBs 

IEEE 802.11ah Amendment to 
IEEE802.11. Wi-Fi HaLow.  

Research Considerations 

47 CFR 18 and 47 CFR 15  Wireless communications 
and ISM band 

Using the 900MHz bands 
for wireless 
communications 
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IEEE 802.15.4 and .5 WPAN and Mesh 
Networking standards + 
Chirp Spread Spectrum 

Research and Design 
Considerations 

UL 2054 Safety requirements and 
tests for batteries 

Batteries  

 

3.2. Other Safety Concerns 
 
The following section discusses what kind of safety concerns that we have when 
designing the project. Our project uses electricity meaning that there is important 
consideration that we should make in its design. 
 

3.2.1. RoHS 
 
Some materials are hazardous and harmful to the environment. To mitigate our effects 
on the environment, this project will be RoHS compliant to the best of our ability. This 
means that we will avoid components that contain lead, mercury, cadmium, hexavalent 
chromium, polybrominated biphenyls, polybrominated diphenyl ethers, and some 
phthalates (RoHS, 2005).  
 

3.2.2. Battery Safety 
 
Battery monitoring is an important aspect for this project as most battery types available 
due to sizing constraints are prone to self-ignition which would ultimately defeat the 
purpose of this project. How good would a fire detection system be if every so often the 
systems caught fire. To alleviate this issue the state of the battery is constantly monitored 
at every start of the detection system to make sure that the voltage and current are within 
the specifications laid out by the manufacturer. To accomplish this task the MCU would 
read the voltage and current across a resistor and compare it to a set of known values to 
check if the battery is within its specifications. The state of the system will be converted 
from analog to digital and transmitted if any anomalous behavior is detected at which time 
the system can power down and wait for a technician to repair it. 

 
Since Li-Ion batteries are being used in this project it was important to understand their 
thermal limitations. Li-Ion has an issue with thermal runaway which is when a battery 
reaches a certain temperature and crosses a threshold that will cause the battery to 
rapidly rise in temperature. The battery will ultimately fail and catch fire and due to the 
chemical makeup of the battery the fire cannot be extinguished easily and normally burns 
until the fuel source, the chemicals and metals in the battery, burns out. 
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3.2.3. Electrical Safety 
 
The system shall take advice from IEEE C2-2012 for Information Technology Safety and 
will also follow guidelines of IPC-2220 Generic Standard on Printed Board Design (IPC-
2221, 1998; Electronic Code of Federal Regulations, 1996). 
 

4. Research and Background Information 
 
The following sections discuss our research into this project idea. The project itself 
contains many different technologies and designs independently from each other. To 
make sure everything works together, we need to research and fully understand each 
part of the project before going into detail and designing the final system. 
 

4.1. Current Fire Detection Systems 
 
The first step is to look into current fire detection systems. These systems are based on 
a variety of technologies. Some of these technologies will be used by us as well but some 
will be skipped over if they are not pertinent to our design goals. The following subsections 
discuss the products used in the industry today or that have been designed before as well 
as similar projects using an Arduino. Each of these projects have different costs and 
requirements associated. By understanding what sets these systems apart from each 
other, good designs can be created that meet our needs. 
 

4.1.1. Products Used in the Industry 
 
Current forest fire detection and monitoring systems use video cameras to recognize 
smoke spectrum, thermal cameras to detect heat glow, IR spectrometers, and LIDAR 
(detection of light and range) to detect smoke particles using reflected laser (Nörthemann, 
Bienge, Müller, & Moritz, 2013). These systems are costly due to the nature of the 
technology. Our objective is to design a system that can accomplish its goal while driving 
cost down significantly through careful electronic design and component selection.  

 
The following forest fire detection and monitoring systems exist in the market 
(Nörthemann, Bienge, Müller, & Moritz, 2013):  
 
1. AlarmEYE:  

a. Video and infrared system using black and white color frequency. 
2. EYEfi SPARC:  

a. Optical sensors that includes camera, light sensors, communication, weather, 
power system, option for tilt zoom camera. 

b. Does not include smoke detection 
3. UraFire: 

a. Smoke detection system focused on “clustering motions and a time input” 
4. Forest Fire Finder: 
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a. Analyzes how atmosphere absorbs light and differentiates absorption behavior 
b. Can detect smoke in a range of 15km 

5. ForestWatch:  
a. Sensor camera mounted on a tower using a using a 360° pan tilt camera that scans 

the forest in a range of 16-20km for smoke in the daytime and flame at night. 
6. FireWatch:  

a. Optical sensor system that scans the forest using a 360° camera with a central 
office for monitoring and data processing.  

7. FireHawk:  
a. Cameras stationed strategically in the forest, the system uses GIS mapping and 

ForestWatch software to calculate the shortest distance to the fire. 
 

4.1.2. Similar Project 
 

The Arduino fire alarm system using temperature and smoke sensor with Android 
connectivity is a product that exits in the market for $5,900 USD and serves a similar 
purpose to the final product we aim to design (Arduino fire alarm system using 
temperature and smoke sensor with Android connectivity, n.d.). 

A major drawback of this kit is the high market value price despite the product using 

straightforward components. This price can be attributed to the fire-proof enclosure, which 
typically raises the cost of the system. Moreover, the product uses Bluetooth technology 
to communicate an alert through a mobile app. Bluetooth technology can range from 30m 
to 100m, which could function in an indoor environment but is not ideal for an outdoor 

Figure  2: Arduino Uno being used in a similar project (Arduino fire alarm system using temperature 
and smoke sensor with Android connectivity, n.d.) 
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environment that is intended (Bluetooth, 2020). Moreover, it is not clear if this product will 
communicate with other fire systems around it, such as in a mesh network. 
 
However, this product contains many of the features intended to use for this project and 
the strategic placement of parts will be useful when designing the printed circuit board for 
this project. The temperature sensor, smoke sensor, and microcontroller are components 
that would be implemented in this project. Thus, our project would achieve a similar 
objective to the Arduino system; however, most importantly the cost will be significantly 
lower with wider range and similar fire detection technologies.  
 

4.2. Background Research 
 
After looking at systems that already exist to detect fires, we need to investigate other 
kinds of technologies that the project will use. Without an understanding of these 
individual parts, the system will not function properly. In this section, a narrower view is 
taken such that individual components, sensors, and protocols are examined for their 
efficacy in the project. 
 

4.2.1. Serial Communication Protocols 
 
Serial communication is dependent on the type of microcontroller used and the 
communication protocol of the chosen sensors. Based on the research, the likely 
protocols to be used for this project will be SPI or I2C.  
 
SPI or Serial Peripheral Interface requires a 4-wire connection: a clock signal (SCLK), a 
slave select signal (SSn), Master Out Slave In (MOSI), Master In Slave Out (MISO) 
(Leens, 2009). SPI uses a protocol where a single device sends the communication to 
the slave devices, thus it uses the single-master communication protocol (Leens, 2009). 
In order for communication to occur, the master and slave must use SCLK frequency, 
CPOL, and CPHA (Leens, 2009). In the event when multiple slaves exist, the master will 
reconfigure itself each time to initiate the communication with each slave (Leens, 2009). 
SPI does not have a maximum data rate, nor does it use a specific addressing structure. 
In addition, SPI does not have a system to acknowledge that the device received data or 
options to control the flow of data (Leens, 2009). Therefore, if SPI is used in command 
type applications, an additional structure would need to be incorporated.  
 
The physical interface of SPI is flexible in the sense that many variants currently use a 
continuous clock signal and random lengths compared to past types that were non-
continuous clocks and used a single byte scheme.  
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Figure  3: SPI Topology (Leens, 2009) 

 
I2C or Inter-integrated circuit is known for requiring a 2-wire connection between the 
peripherals and the microcontroller (Leens, 2009). The two signals are called serial data 
(SDA) and serial clock (SCL) (Leens, 2009). I2C allows multiple slaves and masters to 
be connected and communicate (bi-directionally) between the two lines using a protocol 
that includes 7-bit slave addresses and data divided into 8-bit bytes (Leens, 2009). The 
bus master is the IC that initiates the data transfer, while the remaining IC are considered 
bus slaves (Leens, 2009). The data rate should be between 100kb/s, 400kb/s and 3.4 
Mb/s for standard mode, fast mode, and high-speed mode, respectively (Leens, 2009). 
There some variants of I2C that include a low speed mode at 1kb/s and fast mode + at 
1Mb/s (Leens, 2009). 
 

 
Figure  4: I2C Topology 
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The physical interface of I2C is compose d of SCL and SDA lines as open drain I/Os with 
pull-up resistors; while grounded it is a logic zero and while released is a logic one (Leens, 
2009). Due to the physical structure of I2C, communication can occur without conflict 
even if multiple two devices are continuously sending information on the SDA and SCL 
lines; there is no electrical interruption due to the open-drain and pull-up setup.  This is 
illustrated in Figure 5 (Leens, 2009). 

 
Figure  5: Timing Diagram of I2C (Leens, 2009) 

I2C has several advantages over SPI. Firstly, since I2C only uses 2-line connections, this 
allows easier implementation since less pins are required. Moreover, I2C allows for 
smooth communication with is advance feature of resolving multi-master communication 
conflicts on a simple physical structure (Leens, 2009). I2C’s setbacks in comparison with 
SPI is with data rate; SPI is a full-duplex which means simultaneous communication is 
possible. Moreover, SPI does not define a speed limit for transmitting data (Leens, 2009).  
 
After examining both protocols, I2C would be the ideal communication protocol between 
the microcontroller and the sensors; however, SPI is not completely ruled out. The 
advantages I2C provides helps achieve the purpose of the project in a straightforward 
manner. The drawbacks will be considered during implementation but do not pose a risk 
for the project.  
 

4.2.2. Sensors 
4.2.2.1. Gas Sensors 
 
When reviewing gas sensor types, the important parameters to consider are sensitivity 
and selectivity. Additional parameters to consider are response time, stability, 
reversibility, energy consumption, fabrication cost, and adsorptive capacity according to 
IEEE fellow researchers investigating fire sensing technologies (Gaur, et al., 2019). Gas 
sensors detect gases by observing for variation in the sensor output, which typically is an 
analog value; however, some gas sensors send a digital signal out.  
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Table 4: Gas Measurements in the Atmosphere During a Fire (Fonollosa, Solorzano, & Marco, 2018) 

 
Sensors vary by the material used; existing materials in the market include 
semiconductor, catalytic bead, photoionization, infrared, and electrochemical. Additional 
gas sensor types include optical, acoustic, gas chromatograph, and calorimetric (Gaur, 
et al., 2019).  
 
In the event of a fire, the air quality changes; the severity depends on the severity of the 
fire and the environmental conditions. Forest fires tend to release high levels of N2, O2, 

CO, CO2, H2O gasses (Gaur, et al., 2019). Changes in oxygen levels can provide indication 
of the type of fire. A low change in concentration suggests a smoldering fire while large 
changes suggest liquid fuel fires that rapidly burning fires (Gaur, et al., 2019). 
 
Gas sensors made with semiconductor metal oxide are an ideal choice of materials 
however they come with disadvantages namely with stability issues that lead to false 
alarms (Gaur, et al., 2019). However, despite this issue, zeolites have been used instead 
of metal oxides to compensate for this issue (Gaur, et al., 2019). Moreover, gas sensors 
that use polymers have shown to enhance sensitivity (Gaur, et al., 2019).  
 
Based on spectroscopy laws gas sensors that use optical methods are more stable, 
sensitive, possess better selectivity, and have a low response time (Gaur, et al., 2019). 
However, optical gas sensors come with the disadvantage of higher costs (Gaur, et al., 
2019). 
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A novel method of gas detection uses acoustic waves by detecting the change in velocity 
of the wave due to adjusting a parameter of the sensor’s material, for example the mass 
(Gaur, et al., 2019). A laser beam is shined through the gas. The gas molecules absorb 
the beam and releases the beam’s energy resulting in an acoustic wave which is detected 
using an acoustic sensor. The magnitude of the wave is used to identify the concentration 
of the gas in the atmosphere. The figure below provides a depiction of how this is 

achieved. 
Figure  6: Acoustic gas detection method (Gaur, et al., 2019) 

 
Other methods of gas detection use a combination of sensors to detect temperature and 
humidity and an algorithm to detect gases such as CO and CO2 (Gaur, et al., 2019). 
These gas sensors use metal oxide or n-LTPS MOS Schottky diode on a glass substrate 
(Gaur, et al., 2019). SnO2 provides the highest quality in terms of sensitivity ratio; this 
was used for gas sensor to detect gasses emitted during fires by detecting the smells 
from cotton and the printed circuit board when it is heated at 200 degree Celsius (Gaur, 
et al., 2019). This is achieved by measuring the change in resistance of the parts due to 
gas emission. 
 

4.2.2.2. Smoke Sensors 
 
Understanding smoke characteristics and causes helps understand how smoke sensors 
function in order to choose an appropriate smoke sensor for forest fire applications. 
Smoke is produced when a fire is burning and materials are combusted; it is composed 
of airborne solid, liquid particulates, and gases, which deems it an unwanted element in 
the atmosphere since it reduces the air quality in the environment.  
 
Smoke detection uses two techniques to detect its presence: non-visual and visual (Gaur, 
et al., 2019). In a non-visual method, the detection technique looks smoke combustion 
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conditions such as pyrolysis, smoldering, and flaming; these conditions are contingent on 
the type of fire and the environmental surrounding (Gaur, et al., 2019).  
 
Smoke detection methods that use the photoelectric principle are primarily used for 
smoldering conditions and is effective in doing so; response times are quick (Gaur, et al., 
2019). In this method, the ionization smoke sensor measures smoke relative to the 
ionization levels in the air (Gaur, et al., 2019). A potential difference is applied through a 
chamber and the output current is measured as a result (Gaur, et al., 2019). Moreover, 
photoelectric method dictates that the concentration of smoke in the air will proportionally 
increase the light scattering capacity (Gaur, et al., 2019). Thus, this method measures 
the variation in light scattered using optical science and technology to detect the smoke 
levels in each area. It is also common to combine this method with gas sensing 
technology for better results.  
 
Other smoke detectors use alpha particles to the gate of a MOSFET which induces a 
positive charge (Gaur, et al., 2019). When the smoke concentrations are high, smoke 
particles decrease the number of alpha particles in the gate terminal which then reduces 
the current (Gaur, et al., 2019). Other photoelectrical methods investigated the range of 
transmission for wood smoke using a white polychromatic LED, an optical fiber, pyrex 
glass window, and photodiodes (Gaur, et al., 2019). This could be implemented in a forest 
environment. The figure below provides a visual of how photoelectrical smoke sensors 
works. 

 
Figure  7: Visual representation of photoelectric smoke detection (Gaur, et al., 2019) 

Visual techniques mostly use cameras which can detect both flame and smoke (Gaur, et 
al., 2019). The nature of smoke is that it exists at the beginning of the fire which is crucial 
when designing fire-detection strategies. Smoke detection uses color space, specifically 
RGB or YUV. With RGB, pixel rules must be used; however, with YUV, the rules are 
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dictated by looking at chrominance and luminance values (Gaur, et al., 2019). To 
overcome false alarms, luminance mapping is used paired with support vector machines 
(SVM) algorithm, and Bayesian network algorithm. Other techniques to detect smoke use 
Adaboost with staircase searching (Gaur, et al., 2019). 
 
Yet, detecting smoke at the early stage can be difficult when comparing it flame detection; 
it is very common for smoke and flame characteristics to be used when creating 
algorithms. However, smoke direction can be detected using cameras and various 
algorithms.  

 

4.2.2.3. Flame Sensors 
 
In order to understand flame detection to choose a suitable sensor, it is important to 
understand the nature and characteristics of a flame. Flame is a visible exothermic 
reaction that occurs in a fire due to fuel and oxidants interacting, thus flames emit radiation 
and chromatic properties. Flame temperature is dependent on the material that is burning.  

 
There are two methods of flame detection: non-visual and visual flame techniques (Gaur, 
et al., 2019). Non-visual flame sensors use ultra-violet, visible, and infrared rays (Gaur, 
et al., 2019). This is because flames emit a radiation whose intensity is determined by the 
flame temperature and the type of fuel burning (Gaur, et al., 2019). An ultra-violet sensor 
is used to measure the brightness since UV sensors are not impacted by interreferences 
from other radiations such as infrared (Gaur, et al., 2019). Additionally, infrared and visible 
light sensors are used to measure flame. However, IR and visible light sensors are more 
effective than ultra-violet sensors (Gaur, et al., 2019). UV sensors tend give out more 
false positive alerts due UV sensors emitting sparks of UV spectra that essential interferes 
with the signal (Gaur, et al., 2019). To overcome this effect, a near infrared photodetector 
(NIR) can be used for flame detection. NIRs are made of Pb semiconductor using 
Colloidal Quantum Dots (CQD) technique (Gaur, et al., 2019). 
 
Visual techniques for detecting flame can be difficult because standard heat, smoke 
flame, and gas sensors is the delay in receiving a response (Gaur, et al., 2019). This is 
because the particles must reach the sensors in order for the sensor to trigger a response 
signal (Gaur, et al., 2019). Moreover, the range of detection tends to have a small radius. 
As a result, this issue is typically resolved by installing many sensors to cover a large 
area (Gaur, et al., 2019). Moreover, the nature of fires come with various characteristics 
such as shape, size, color, location, growth, degree of burning, and dynamic texture and 
typical sensors are not capable of measuring each of these characteristics and their 
parameters accurately (Gaur, et al., 2019). Thus, flame sensors that depend on these 
techniques give false alarms whose validity can only be evaluated by an experienced 
individual.  
 
A device to solve this issue is using a camera that can capture images of fire and analyze 
them accordingly to establish fire detection. Such cameras tend to be very high cost; thus, 
it is more common to see surveillance cameras being used instead. IR cameras have 
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been used for flame detection by using the Markov model to detect flame flicker (Gaur, et 
al., 2019). The figure below is a flow chart that explains how this works. 
 
Once a camera records data and provides it in the RAW, RGB, YUV, JPEG formats, 
algorithms can be used to examine the images and deduce if the image frame has the 
visual characteristics of a fire or not. There are two main methods of designing the 
algorithm. The first approach analyzes characteristics such as color, shape, flickering 
frequency, and dynamic texture of the fire (Gaur, et al., 2019). This requires the use of 
color spaces; YCbCr color space showed to be the most effective for flame detection 
(Gaur, et al., 2019). Other color spaces that can also been used are RGB, CIE L∗a∗b∗, 
YUV, or HIS (Gaur, et al., 2019).  

 

 
 
Figure  8: Hidden Markov model used to detect flame flicker (Liqiang Wang, 2011) 
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Color information is not enough to provide accurate results (Gaur, et al., 2019). Movement 
of fire has also been examined for fire detection techniques by using background 
subtraction method, temporal differencing, and optical flow analysis (Gaur, et al., 2019). 
The Markov model can be used to detect flame movement for object that have flame-like 
colors as well as flame boundaries using temporal wavelet analysis (Gaur, et al., 2019). 
Moreover, a moving camera can be used to observe moving flame pixels without using 
background subtraction (Gaur, et al., 2019). This can be paired with detecting color, 
temporal, and spatial information in each spatiotemporal area. However, this method can 
slow the fire-detecting process since the range is weak. Another method utilized the Wald-
Wolfwitz algorithm for flame detection looking a parameter such as color and predictive 
motion movement (Gaur, et al., 2019). The reliability of the results was increased using a 
“convolution operation” (Gaur, et al., 2019). 
 

 
Figure  9: Convolution neural networks approach layers (Gaur, et al., 2019) 

 
The second approach of designing the fire detection algorithm utilizes a learning-based 
approach (Gaur, et al., 2019). In this method, the system is provided a dataset of fire and 
non-fire images and is “trained” to make an appropriate judgement by analyzing for 
specific fire features. Convolution neural networks approach is a common approach that 
achieves this, as well as You Only Look Once (YOLO), and is discussed later in the paper. 
The figure below provides a visual of the layers involved 
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.  
Figure  10: Example of the Wald-Wolfwitz randomness test being used for flame detection 

4.2.3. Fire Resistant Enclosure Materials  
 
There are a multitude of fire resistive materials to choose from but what is need for this 
project is something that is light and offers the most fire resistance possible while not 
being excessively expensive. For the purpose of this project the enclosure that will be 
used for each prototype will not be fire resistant. This is done to minimize the cost and 
manufacturing process for senior design two. If this project was to be mass produced, 
then a fire protective encloser would be utilized to protect the devices in case the fire it 
has warned about has climbed up to wherever the device is located. 

 
A few choice materials have been selected for their fire resistive properties and their ease 
of implementation into a manufacturing process. The first material is Kevlar; Kevlar is a 
synthetic material developed by DuPont and is extremely shock resistant and fire resistant 
(ScienceDirect). It is not very abrasion resistant but that will not be an issue as the Kevlar 
would be manufactured into a composite material consisting of a resin and the Kevlar 
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woven cloth. The issue with making an enclosure this way is the fire resistance is now 
going to be limited to the resin is used to cast the composite into shape using a mold. The 
Kevlar itself has some draw backs, it is very expensive and being a synthetic fiber, it can 
cause some medical issues if the individual fibers are inhaled (ScienceDirect).  

 

 
Figure  11: Synthetic Fiber Kevlar (Jamestown Distributors) 

Another choice material is carbon fiber weave. Carbon itself is very fire resistive and in 
its pure form is used for nearly all castings for materials that need to be heated to 
extremely high temperatures, temperatures way hotter than a normal wood fire could ever 
reach. It has the same drawbacks as Kevlar when it comes to cost and handling of the 
raw material. The carbon fiber weave would also need to be made into a composite with 
a high temperature resin which would limit the fire resistance to according to the resin is 
limited to. 
 
The easiest material for manufacturing would be plastic. Most plastics are not fire 
resistant at all. They have many failure modes from melting to ignition. For this project we 
would want a plastic compound that does neither. Luckily there are plastics that only burn 
up and off gas when they do so, but they do not ignite or melt. These plastics could have 
additives put in them to increase their fire resistance; an example is any compound that 
is a brominated flame retardant (BRF). These compounds burn up in the fire creating a 
sort of sublimating coating around the plastic which the fire has to get through first to burn 
the plastic. 
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Figure  12: Carbon Fiber Weave (WallpaperAccess) 

 

4.2.4. Battery Charging and Battery Chemistries 
 
The battery for the project must be able to last throughout the night and when the solar 
radiation is low on average for the winter months it must be able to handle not being at 
full capacity during the day. There are many battery chemistries to choose from with a 
few types of batteries not being viable at all for the system. Lead acid and absorbent glass 
mat car or RV style batteries couldn’t be used due to sizing and weight.  
Lighter smaller batteries were the only batteries available to be used so a NiCad or Li-Ion 
battery style would have to be used. For this project the best option to go with would be 
to choose a battery within budget that is the most power dense and the chemical makeup 
of said battery allows for the most charge cycles. 

 
Figure  13: Maximum Charge/Discharge Cycles Versus Battery Type (Tan, 2019) 
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Researching different types of batteries lead to an issue arising between them. The max 
depth of discharge had to be accounted for along with how many charge cycles the 
batteries could handle. NiCad, or nickel cadmium batteries, were a cheaper option for the 
project but the weight and size made them a bad option. Nickel-metal hydride batteries 
come at a high price and lithium ion batteries along with lithium polymer batteries have 
the same level of charge cycles so it would make sense to go with which ever one was 
the cheaper option. The best option at first seemed to be lithium iron phosphate, or 
LiFeP4, but this one is the most expensive out of all the options but did allow for the most 
charge cycles out of them all. For a final product it may be a better option to go with this 
battery but for the sake of cost, weight, and size Li-Ion batteries seemed like the best 
option for the prototype system. 
 

 
Figure  14: Self-Discharge Rates of Batteries (Tan, 2019) 

To further cause issues in choosing a battery for the project the self-discharge rate was 
a factor to deal with. Self-discharge is when a battery will slowly lose charge over time 
when not in use. Since the solar panels were going to charge the batteries every day the 
discharge rate wasn’t a massive impact but the battery that was chosen needed to be at 
least able to handle a few days of not being charged and remain in stand by for when the 
weather blocks out the sun for a while like in the case of a thunderstorm or hurricane. The 
only battery that could be ruled out this way was NiMH as it had the highest self-discharge 
rate of all the batteries being looked at. 
 

4.2.4.1. Effect of Temperature on Batteries  
 
For this project, the batteries are going to experience high ambient temperature in the 
summertime and most likely very low wintertime temperature due to being placed in 
higher locations out in the open. These conditions change how a batteries chemistry 
works and will change the overall life and performance of the battery. Wintertime 
temperatures shorten the charge life of a battery by slowing down the chemical reaction 
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happening in the cell when power is being drawn from it. When in standby and not being 
used cold temperatures will increase the self-discharge rate of the cells which is only 
worsened by the fact that wintertime conditions lessen the output of a solar array because 
the solar radiation isn’t as condensed as in the summertime. This will cause the overall 
max amp to draw to be less as well and could cause total system failure due to over 
drawing the battery.  
 
The figure bellow is a graph that highlights what happens to the battery maximum charge 
storage capacity if the temperature is increased like in summertime conditions. As shown 
the max storage of the battery is not affected until the natural battery charge cycle lifespan 
starts to end. The high temperatures only increase the damage done by having a battery 
go through many charge cycles with the peak temp of 55C having the most affect it can 
be postulated that further increase would cause even more damage but seeing how 55C 
is 131F it is unlikely ambient temperatures will exceed this unless the device is currently 
engulfed in a fire. 
 

 
Figure  15: Temperature Vs Charge (Leng, Tan, & Pecht, 2015) 

 
The other figure, shown below, is a graph that shows how an increase in temperature on 
a battery will lower the max amp output of a battery. RnCw is the current flowing across a 
resistor and capacitor in parallel and demonstrates how the battery has an exponential 
threshold at 45C and any increase beyond this will drastically decrease the max amp 
draw of a battery. This could cause the same issue as the wintertime conditions in where 
a total system failure is cause due to pulling to many amps from the batteries.  
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Figure  16: Temperature Vs Time (cycles) (Leng, Tan, & Pecht, 2015) 

 
All this means the system needed to be designed to be able to handle the drastic 
temperature differences seasonal changes brings which was accounted for by doubling 
the power supply system. The number of battery cells was doubled along with the solar 
array. This safety factor of two will provide a hefty cushion of protection any temperature 
change might cause on the system by having the system draw minimum power in the 
most optimal conditions. 
 

4.2.5. Li-Ion for System Power 
 

The final decision to use li-ion batteries for this system was made on multiple decisions. 
The major decision this battery was chosen for this project was cost and availability. Li-
ion is the most used battery in technology right now.  
This means that near and size and configuration for the battery can be found and sourced 
for the constraints in the project. Many of the students working on this system had the 
standard 18650 sized li-ion cell battery to use for any testing of the system so it made the 
most sense to go with this battery chemistry for the system. 
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A few smaller reasons is the way li-ions operate such as how the power output doesn’t 
drop as the battery is depleted or how the batteries come with safety built in to prevent 
over charging, or overvolting, the battery which is good for preventing the system from 
causing a fire. The chemical make-up of the battery also allows for a minimum for 70 full 
charge cycles. That means the batteries can be fully discharged and then recharged to 
full 70 times before the battery health starts to deteriorate. This doesn’t prevent the battery 
from operating anymore it only causes the battery to discharge faster than when it was 
new. 
 

4.2.6. Power Supply Topology 
 
The power supply for this system is a solar array that is 12 volts nominally and is hooked 
up to a voltage regulator that converts that 12 volts into 5 volts with a mix current draw of 
2 amps. This is then hooked up to a lithium battery charging IC. The battery and solar 
panels are then hooked to a buck-boost converted that maintains 3.3-volt and 5-volt rails 
for the Pi and sensors for the system. This power system must be able to utilize the solar 
cells and battery at the same time as to not put undue stress on the battery and cause 
constant charging to occur.  
 
To ensure that the system operates at the proper voltages, we must employ some kind 
of DC to DC power converter. In the case of our solar panel, we must ensure that at all 
times it outputs an acceptable voltage for charging to our charging IC, but at the same 
time allows for the proper voltages to be fed into the system during normal usage. This 
will require step down converters.  

 

4.2.3.1  Linear vs Switching Regulators 
 
There are two common types of power converters: Linear and Switching. Linear 
regulators are the simplest form of regulator as they directly convert power in to power 
out. That is, there is no complex operation internal to the regulator. This simple 
conversion, however, comes at a price. Linear regulators dissipate a lot of heat when 
used and are generally inefficient. As a result, a linear regulator will require a heat sink if 
a lot of power is expected to be converted to heat. This will add weight and cost to the 
design. Luckily, a linear regulator is generally cheaper and has less components to 
support it than a switching regulator. A downside to using linear regulators is that they 
must always step-down voltage. There is not a way to step up the voltage through a linear 
regulator. Switching regulators provide many different topologies that can, in some cases, 
raise the voltage.  
It is even possible to design a switching regulator that can lower or raise the input voltage 
if it is unstable and is sometimes higher or lower than the desired voltage. This does not 
mean that linear regulators don’t have their use. Linear regulators are great when there 
is a decent amount of power coming in and lower power draw on the other side. An 
advantage to using them is when there is a small difference in voltage going in and voltage 
coming out. If the desired voltage is just slightly lower than the input voltage, then the 
efficiency can be greater than 97%, but only in this case. Usually, it is lower. Considering 
our design with batteries: two batteries in series will generate around 8V. If we use a 
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linear regulator to step down to 5V or 3.3V, there is a significant (greater than a volt) 
decrease in voltage. I can be expected, in this case, that the linear regulator will be much 
less efficient than a switching regulator. Since our design is purely powered from a solar 
panel and a battery, we must make sure that we are efficiently transferring power between 
different parts of the circuit and not wasting any power in heat dissipation. 
 
Switching regulators, on the other hand, are the more likely solution that we will implement 
in the final design. Compared to linear regulators, they are more expensive and require 
more support circuitry causing them to be a bit more complex than a linear regulator. The 
benefit is in efficiency. With a circuit designed properly, the power coming in can be 
efficiently converted to the proper power going out. Sometimes even greater than 99%! 
Since we are charging the battery and running the circuit off of the solar panel, we will 
need to efficiently step down the voltage from the panel to the battery charge voltage, and 
then from the battery voltage to the circuit voltage. This means we will need 2 to 3 
switching regulators in our final design. The high efficiency implies that there is very little 
heat dissipation. This is good, as our ambient temperature is going to be higher (or lower 
in some cases!) than room temperature. The device is designed to operate outside. In 
turn, we don’t want the device to have too much affect on the heat around it such that it 
does not exceed specific component heating constraints. Since the switching regulator 
has more components to support it, it will take up more board space. This is a price that 
must be paid for the efficiency boost. In the end, the board space is not critical if designed 
appropriately. Since our project does not have any externally imposed sizing constraints, 
we can move forward with switching regulators. 

 

4.2.3.2  Buck and Boost Converter 
 
While discussing switching regulators, it is good to have a general idea on how the major 
topologies of different switching regulator designs operate. In our design, we do not 
expect to be raising voltages. Therefore, we need to step-down a voltage. This kind of 
converter is known as a Buck Converter. They are configured only to step-down DC 
voltages. Buck converters store energy in a passive component, usually an inductor, and 
uses that stored energy to output a specific value. To store the energy, a pulse width 
modulator can be used to charge and discharge the passive component as necessary. 
The duty cycle of this pulse determines the voltage that is output since the passive 
component must be discharging to provide current. While charging, the passive 
component is usually supported by a capacitor on the output end of the regulator. The 
passive component is in series with the load, causing a voltage drop due to the impedance 
of the device and the time that can charge the passive device. Even though the voltage 
is lower, the charging/discharging of the device still keeps the average power equivalent 
(or nearly so) while in operation. 
 
In juxtaposition to a Buck Converter, a Boost Converter is designed to increase voltages. 
This step-up behavior works in the same way as the Buck Converter: A transistor works 
as a switch and at the right switching frequency it charges and discharges a passive 
component, usually an inductor. Since current cannot change instantaneously across an 
inductor, when the switch is open, the energy stored in the inductor elevates the voltage 
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level above the input of the storage component to keep power consistent on each leg of 
the power network. This action compensates for the lower voltage on the other side at the 
cost of lower currents on the high side. The load now sees a higher voltage than the input 
source has. 
 
In both designs, heavy filtering may be necessary for sensitive components to avoid 
issues with the switching action. This “On-Off” methodology introduces noise into the 
power system which can be detrimental to digital logic devices (like microcontrollers, 
processors, or DSP devices). In many cases, a switching regulator will feature strong 
capacitors in the input and output stage to help compensate for the noise and filter it out. 
 

4.2.7. Solar Array Design 
 
Assuming a 12v system that draws an average of 100mA, we determined the needs of 
the system to be almost 29Wh per day. For 5 hours of maximum power output with an 
MPPT we need 5.76W so a 500mA MPPT would be needed. The MPPT would have to 
be a custom made one as the ones available for purchase are over specifications and 
wouldn’t be able to handle the low amount of power flowing through them efficiently.  
 
To make sure the system could handle any solar radiation issues that could arise for a 
few reasons such as weather or the panels getting dirty the entire system had a safety 
factor of two applied. The needed array and battery size were doubled to account for 
unforeseen issues. This didn’t affect the cost to greatly as finding solar panels in the sizes 
needed was difficult and had a price gouge on them for being so small. Cheaper panels 
that were larger and more powerful were cheaper so the system being doubled was the 
best option.  
 

4.2.7.1. Azimuth and Elevation/Tilt Angle 
 
To properly arrange a solar array to absorb the most solar radiation as possible it needs 
to have the proper azimuth and inclination angle for the location it is being used at. 
Azimuth is the direction the panels are pointed, measured in degrees with 0 degrees 
being south and north being 180 degrees, and inclination is how far a panel is tilted up. 
The change is performance of the system if not properly set up is drastic and the location 
of the solar panels changes both these parameters which can make it difficult to calculate 
the proper setup. If the location is west of the Mississippi river then magnetic declination 
needs to be considered for the azimuth angle.  
 
For panels in the Northern hemisphere if the magnetic declination is positive, or east, the 
panels need to be rotated eastward at the angle of magnetic declination that accounts for 
the change in the Earth’s magnetic field lines. If it is negative, or west, the panels need to 
be rotated westward to account for the declination. This must be done because the earth’s 
magnetic field is not constant with what true north or true south is. A compass has slight 
errors in it due to magnetic declination and must be taken into account when setting up a 
panel as all calculations are based off true north.  
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Setting the tilt of a panel is simple if the panel is to be ridged mounted and not to be 
moved. The tilt angle is simply equal to what the latitude is in the location the panels are 
being set up. Depending on the location though the panels might need to be tilted plus or 
minus a few degrees to optimize them for certain seasons. If the system produces more 
power than it consumes in the summer than the system may struggle in the winter and if 
this is the case then the tilt should be angled up, plus, about 10 to 15 degrees to account 
for low winter production. This will affect the summertime production of the panels but for 
this system the summertime solar energy production will be more than what is needed 
and the locations in which the system might be placed is expected to have harsh winters.  
 

 
Figure  17: Azimuth and Elevation 

 
 
A small note on solar tracking systems and their value to this project. While solar tracking 
technology does exist and could be designed and manufactured into this system it adds 
significant complexity and design, along with weight. Solar tracking systems cost between 
$600 to $1000 per panel depending on size and, at best, increase production by about 
20%. For our project, the cost and added complexity means that they will not be used. 
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4.2.8. RF Design and Frequency Selection 
 
To work effectively over a large area, the system needs to be able to wirelessly transmit 
data. Different antenna designs and frequencies play a role in designing the circuits and 
choosing the components that will work with wireless technologies. This section 
investigates the different issues with RF design and some decision-making processes 
that took place to choose frequencies and other design elements. 
 

4.2.8.1. RF Considerations 
 
RF and wireless applications require that some specific design rules be followed. If these 
rules are not taken into consideration, then significant power and range issues may 
present themselves. At low power levels, avoiding signal loss is very important. Any piece 
of wire can be considered an antenna. How well that wire radiates energy is dependent 
on the wire being resonant at the same frequency as the signal applied and that the feed 
point of the antenna is matched to the impedance of the attached transmitter. Direction 
and range are then determined by the design and shape of the antenna. It is possible that 
the radiated energy be aimed at a single point or that it radiates out in a sphere or 
doughnut shape. 
 
The antenna must be the correct length at the frequency of operation, and it must have 
its impedance matched by the transmitter or receiver to operate correctly. Impedance 
matching maximizes the power transfer from the transmitter or receiver to the antenna.  

 

4.2.8.2. Frequency Selection 
 
The main discussion of Radio Frequency technologies comes down to range. Ideally, we 
use the IEEE 802.1 Wi-Fi scheme. This however has limited range. These numbers are 
averages. Actual distances depend on a variety of variables.The following numbers were 
compared to get the maximum range out of our device. 
 
Table 5: Comparison Between Technology Ranges and Frequencies 

Technology Frequency Range 

Bluetooth 2.45 GHz 30 Feet 

Wifi 2.45 GHz (or 5GHz) 100 Feet 

Zigbee 2.4 GHz 1000 Feet 

FSK Modulation @ 900MHz 900 MHz 2+ Miles 

LoRa 400 MHz / 900 MHz 10 Miles 

 
Furthermore, we can use the Free-Space Path Loss equation to determine the 
attenuation of radio energy between two antennas. 
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𝐹𝑆𝑃𝐿 = (
4𝜋𝑑𝑓

𝑐
)

2

 

  
where d is the distance between antennas, f is the frequency, and c is the speed of light. 
 
Assuming trying different ranges, we can generate a graph that shows the best option for 
longer ranges and frequencies to minimize attenuation. 
 
Finally, due to regulations of how much power can be dissipated in the 400MHz bands, 
900MHz is a good solution for global use and higher power dissipation. 

 

 
Figure  18: Signal Attenuation Vs Distance of Different Frequencies 

4.2.8.3.  Antenna Design 
Antenna design plays a big role in RF applications. Without a proper antenna design the 
range and sensitivity of the device will be severely impacted. This section outlines some 
research in antenna design and considerations. 
Whip Antennas 
These kinds of antennas are designed for machine-to-machine communication but are 
not used in portable designs much anymore.[45] They are externally mounted, so they do 
not suffer interference issues from a PCB as much as other designs and they are not 
easy to detune. They are very useful for certain applications that could benefit from an 
external antenna. 
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Helical Antennas 
These kinds of antennas are similar to whip antennas but instead of being a strand of 
wire externally mounted, they are copper that’s wound in a helix shape. Since the 
frequency band is selected by the length of the antenna (among other factors), the 
antenna can take up less space since more of the copper takes up less area being wound 
in a loop. Due to their size and mounting style, they are fairly rugged[45] which means they 
can be put inside the mechanical housing of the device and can be hidden from view.  
 
Chip Antennas 
Chip antennas (Usually made from ceramic) are small and easy to put into a design. They 
have several advantages compared to larger antennas. They are not as sensitive to 
proximity interference and from other components. Furthermore, they are easier to 
accommodate without simulation.[46] A downside as these are more expensive than a 
trace PCB but they are generally cheaper than other alternatives. 
 
Trace Antennas 
Trace antennas seem to be the cheapest but most difficult antenna to design. They are 
basically free as they are included in the cost of manufacturing the PCB. This means that, 
if designed correctly, the antenna is free! Furthermore, they are more tamper proof since 
it is embedded into the PCB. When tuned correctly they can operate in a wide bandwidth 
and have a good amount of network reliability [46]

. A downside to these kinds of antennas 
are that they cannot be modified after manufacturing. Any changes to the antenna require 
redoing the board layout and having new boards manufactured again.  

  

4.3. Component Research 
 
An even narrower view than before is the selection of individual components. In the 
following subsections, different components are compared to see if they make a good fit 
for the system. These components, and their selection, will take parts of the previous, 
higher level, sections and focus on individual aspects that set the components apart from 
the others and lend themselves to a good design. 
 

4.3.1. Controller Selection 
 
The fire detection system operates in two parts: Process the sensor data and process the 
network data. Since these devices are wireless and need to be put out over a wide area, 
we need controllers that can support wireless communication and also process the sensor 
data. Some options, initially investigated, were the MSP430 family, ATMega family, and 
Espressif ESP32 controllers as they are popular options for controllers and have a wide 
variety of resources.  As discussed in the following section about Radio Frequency 
communication Technologies, we settled on the LoRa modulation standard as the 
physical layer for communication. Because of this, the MSP430 and ATMega 
microcontrollers fell out of favor since they do not inherently handle RF communications. 
They would have to be interfaced with another circuit to implement the RF design and 
that would increase cost and complexity. To remove this complexity, the SAM R35 was 
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chosen. It contains a LoRa and FSK modulator/demodulator built into the chip. Combined 
with its low power usage and high RAM options, it is a good choice. 
 
Microcontroller Comparison Table 
Note: All values are shown at their highest possible offering if multiple values are given. 
Table 6: Comparison of Microcontrollers 

Controller RAM Flash Avg Power (mA) 
(Tx/Rx/Run/Sleep
) 

Slee
p 
mode 

Wireless 
integratio
n 

Required 
Peripheral
s 

MSP430 66KB 512K
B 

-/-/2.36/.00045 Yes No Yes 

ATMEGA480
8 

48KB 6KB -/-/11/.0001 Yes No Yes 

ESP32 520K
B 

4-
16MB 

240/100/30/.005 Yes Yes Yes 

SAMR3x 32KB 256K
B 

95/16/4.5/.0008 Yes Yes Yes 

 
Finally, the matter of sensor reading, machine learning, and image processing was 
discussed. To handle this simply and quickly, the Raspberry Pi Zero was chosen since it 
can run Python code (making the software easier to write and maintain) and it has a 
relatively low power consumption: 100mA. To handle this simply and quickly, the 
Raspberry Pi Zero was chosen since it can run Python code (making the software easier 
to write and maintain) and it has a relatively low power consumption when idling: 100mA.  
 

4.3.2. Radio Frequency Communication Technology 
 
Since the 900MHz band was chosen as our frequency of choice, there are only a few 
simple to integrate solutions on the market. IEEE 802.11ah would be ideal, however it is 
not quite ready for the industry just yet. 
 
This leaves only a few viable options like XBee and LoRa. 
 
LoRa is seeming like the best modulation technique as it is simple, has many tutorials 
and examples, and has a variety of resources to pull from. Furthermore, the SAMR35 
microcontroller already has the LoRa modulation scheme built into the chip. 
 

4.3.3. Fire Detection Technologies 
 

The solution we have chosen to tackle to the environmental issue of forest fires has been 
narrowed down to sensor detection based on past research and implementation and 
understanding of forest fire behavior. The devices will detect fire using three main 
approaches: flame detection, gas detection, and smoke detection.  
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This approach provides an efficient method of detecting frame light in the nighttime, by 
identifying infrared radiation, but also during the day by sensing specific gasses, smoke 
particles, and beams of bright light (flame) (Errynando Surya Sasmita, 2018). Flame 
sensors observe the wavelength of a burning flame using infrared sensors as 
transducers. Gas sensors are designed to detect the concentration of specific gases in 
the atmosphere also using infrared sensors. When the concentrations reach the sensor’s 
maximum reading, an alarm is triggered. The common gasses released during a fire 
emission include carbon monoxide, carbon dioxide, hydrogen, nitrogen dioxide, sulfur 
dioxide, and volatile organic compounds (Fonollosa, Solorzano, & Marco, 2018). Smoke 
detectors work by emitting alpha particles to the atmosphere. When smoke is present, 
the ionized air molecules interact with the smoke. Other smoke detectors function by 
emitting light to its surrounding; the presence of smoke will cause light shattering which 
sends the signal of a smoke alarm (Fonollosa, Solorzano, & Marco, 2018). 
 

Figure  19: Hydrogen sensor mounted to a tree during an experiment done in Humboldt University in Berlin, Germany. 
(Nörthemann, Bienge, Müller, & Moritz, 2013) 
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Camera surveillance is also another technique that has been used by other systems. In 
this case a video camera system is set up in the forest and used to recognize a spectrum 
of smoke and fire during the day and night (Alkhatib, 2017). Other techniques use thermal 
cameras to detect heat and glow of a fire. Moreover, Infrared spectrometers have been 
used to observe specific visual characteristics of smoke. Lastly, LIDAR (light detection 
and ranging) have been used to measure reflected rays from smoke particles (Alkhatib, 
2017). Cameras provide a range of opportunities however there are challenges 
associated with using them; cameras record images with a number of pixels and observes 
the motion between the images to compare pixels to the characteristics seen in a fire. 
This comparison is done through an algorithm (Alkhatib, 2017). Such optical systems are 

usually integrated with local maps. 
Figure  20: FireWatch adopts a similar concept to our method of scattering sensors in a forest, except their system uses 

cameras (Alkhatib, 2017) 

 
An additional advantage to our approach is the use of wireless sensor networks. A 
wireless sensor network is a cluster of “low- cost battery-powered sensor nodes” that 
uses wireless communication (Aslan, Korpeoglu, & Ulusoy, 2012). A wireless sensor 
network mainly includes numerous sensor devices that typically use low power, low 
processing memory, and low bandwidths (Bouckaert, Poorter, Mil, Moerman, & 
Demeester, 2009) Within this network will be a wireless mesh network, which is defined 
as a “multi-hop wireless network formed by a number of stationary wireless mesh routers” 
(Aslan, Korpeoglu, & Ulusoy, 2012; Bouckaert, Poorter, Mil, Moerman, & Demeester, 
2009). By creating a network of sensors that communicate with each other and send 
updates to the central hub, we are able to identify localized and sweeping fires occurring 
in a forest. Long Range Wireless Data Telemetry, which uses bi-directional VHF / UHF 
radio frequencies, has been studied and suggested to connect multi-node fire sensors 
and GPS to create a fire detection prototype with promising results due to its wide range 
(IEEE, 2018). 
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4.3.3.1. Potential sensor components. 
 

Based on the research, the following components were selected as preferable sensors to 
be used in the system based on electrical characteristics (supply voltage), cost, I2C 
compatibility, and principle of detection. Sensor selection will not be finalized until 
potential sensors have been tested to understand their capabilities and performances. 
Each sensor listed provides an advantage considerable enough to be worth exploring. 
 
Table 7: Gas Sensors 

Gas 
Sensor 
Name  

Op. 
temp. 

Comm. 
protoco
l/ 
Output 
type  

Op. 
Volta
ge 

Cost Notes 

Renesas 
Electronics 
America 
Inc. e 
ZMOD4510 
Gas 
Sensor 
Platform 
Smoke 
Sensors 

-40 ~ 
+65 C 

I2C 
interface 
Up to 
400kHz  
 

1.7V – 
3.6V 

5 for 
$56.
13  
 

Displays air quality index 
 
(NOx) and ozone (O3) (20 – 
500ppb). 
 
 

AMU gas 
sensor 
 

-5°C ~ 
+ 
50°C 

Analog 
output 
with 
Analog 
to Digital 
Convert
or 

1.4V 5 for 
$40 

CO2 (eCO2) range from 400ppm up 
to 29206ppm. 
 
eTVOC range for CCS811 is from 
0ppb up to 32768ppb. 

Senseair 
CO2 
sensor 

0 – 
50°C 

UART, 
Modbus 
protocol 

4.5-
5.25V 

5 for 
$211
.05  
 

Non-dispersive infrared (NDIR) 
principle. Signals alarm output. 
 
CO2 400–2000ppm. Can go up to 
10,000ppm in extended range 
 

AS-MLV-P2 
Air Quality 
Sensor 

up to 
300°C 

Analog 
output, 
requires 
ADC 

3V 5 for 
$84 

Sensitive to humidity changes and 
temperature changes. 
 
CO, butane, methane, ethanol, 
hydrogen from 0 to 6000 ppm 

Multi-gas, 
humidity 
and 
temperatur

5 - 
55°C 

Digital 
I2C 
interface 

5V 10 
for 
$20 

Measures indoor air quality 
parameters total VOC (tVOC), CO2-
equivalent (CO2eq), relative 
humidity RH and temperature. 
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e sensor 
combo 
module 
 

a typical accuracy of ±5 %RH and 
±1°C. 
 
Gasses: 0 – 60000ppm 
Humidity: 0 to 100 %RH 
Temperature: –20 to 85 °C 

Sparkfun 
Gas 
Sensors 

5 - 
55°C 

Resistor 
to 
Analog 
to Digital 
conversi
on 
needed. 

5V 7 
sens
ors 
for 
$30 

Alcohol, LPG, Methane, Carbon 
Monoxide, Hydrogen. 
 
Gas concentrations 200 to 
10000ppm. 

Gravity: 
Analog 
Gas 
Sensor 
(MQ2) 

20℃-

50℃ 

Analog 
output 

 $6.9
0 for 
1. 

Application gas leakage detecting 
equipment in family and industry, 
are suitable for detecting of LPG, i-
butane, propane, methane, alcohol, 
hydrogen, smoke. 

Renesas 
Gas 
Sensor 
Module for 
TVOC and 
Indoor Air 
Quality 
 

Up to 
300 ℃ 
 

I2C  10 
for 
$83 

Detecting total volatile organic 
compounds (TVOC) and monitoring 
indoor air quality (IAQ) in different 
use cases. 
 
Measurement range: 200ppm-
5000ppm LPG and propane 
300ppm-5000ppm butane 
5000ppm-20000ppm methane 
300ppm-5000ppm H2 100ppm-
2000ppm Alcohol 
 

Adafruit 
MiCS5524 
CO, 
Alcohol 
and VOC 
Gas 
Sensor 
Breakout 
 

Up to 
80℃ 

Output is 
a 
resistan
ce, 
analog 
voltage 
proportio
nal to 
gasses 
detected 

5 V 1 for 
$20.
82 

Output does not identify gas 
detected. 
 
CO (~ 1 to 1000 ppm), Ammonia (~ 
1 to 500 ppm), Ethanol (~ 10 to 500 
ppm), H2 (~ 1 - 1000 ppm), and 
Methane/Propane/Iso-Butane (~ 
1,000++ ppm) 

Adafruit 
BME680 - 
Temperatu
re, 
Humidity, 
Pressure 

Up to 
80℃ 

SPI or 
I2C 

 1 for 
$22.
50 

Temperature, humidity, barometric 
pressure, and VOC gas. Must be 
calibrated. Detect gasses & 
alcohols such as Ethanol, Alcohol 
and Carbon.  
Must be calibrated 
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and Gas 
Sensor 
 

 
Humidity with ±3% accuracy, 
barometric pressure with ±1 hPa 
absolute accuracy, and temperature 
with ±1.0°C accuracy. 

 
Table 8: Smoke Sensors 

Sensor Op. 
temp. 

Op.  
Voltage 

Output Cost Notes 

CMOS 
Photoelectric 
Smoke 
Detector 
ASIC with 
Interconnect 
 

-25°C 
to 
75°C 

12V Output 
local 
alarm 
 

25 for 
$17 

An internal oscillator strobes 
power to the smoke detection 
circuitry for 100us every 8.1 
seconds to keep standby 
current to a minimum.  
 
If smoke is sensed the 
detection rate is increased to 
verify an alarm condition. A 
high gain mode is available for 
push button chamber testing.  
 

CMOS 
Ionization 
Smoke 
Detector 
ASIC with 
R&E 
International 
Interconnect 
and Timer 
Mode 
 

-10 to 
60°C 

15V Output: 
local 
alarm 
 

25 for 
$16.50 
 

The smoke comparator 
compares the ionization 
chamber voltage to a voltage 
derived from a resistor divider 
across VDD.  
 
This divider voltage is available 
externally on pin 13 (VSEN). 
When smoke is detected this 
voltage is internally increased 
by 130mV nominal to provide 
hysteresis and make the 
detector less sensitive to false 
triggering. 
 

CMOS Low 
Voltage 
Photoelectric 
Smoke 
Detector 
ASIC with 
Interconnect 
and Timer 
Mode 
 

-10 to 
+60°C 

5V Output 
signal: 
local 
alarm 
 

25 for 
$27.25 
 

The RE46C190 is a low power, 
low voltage CMOS 
photoelectric type smoke 
detector IC. With minimal 
external components, this 
circuit will provide all the 
required features for a 
photoelectric-type smoke 
detector 
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Table 9: Flame Sensors 

Name Op. 
Temp. 

Op. 
Volta
ge 

Comm. 
Protocol / 
Output 

Cost Notes 

ezPyroTM I2C 
Pyroelectric 
Infrared Flame 
Sensor (SMD) 
 

-40 to 
+ 85°C 

2.7 - 
8V 

I2C 1 for 
$33.45 
 

Thin film digital pyroelectric 
IR sensors. 
Full frequency range of 
flame flicker (3-30 Hz).  
 
 

Thin Film 
Pyroelectric 
Flame Sensor 
 

-40 to 
+85 °C 

2.7 - 
8V 

Analog 
output 
 

1 for 
$56 
 

Noise at the signature 8-10 
Hz flicker range of a flame 
Aperture: 5.2 mm x 4.2 mm 
A wide field of view of 
typically 100° 
 
 

QFC 
Pyroelectric 
Infrared Flame 
Sensors, 
Analog 
 

−40 to 
+85°C 

2.7 - 
8V 

Analog 
output 
 

1 for 
$73.76  
 

In triple IR flame detection 
Noise characteristic at the 
signature 8 – 10 Hz flicker 
range of a flame. Used for 
forest protection. Wide field 
of view, typically 100° 
 

KEMET’s QFS 
pyroelectric 
flame sensors 
 

 1.75 
– 
3.6V 

I2C 1 for 
$24.82 

High dynamic range to 
ensure rapid and accurate 
detection of small and large 
flames, nearby or over larger 
distances.  
Full frequency range of 
flame flicker from 3 – 30 Hz. 
90° field view 

Analog’s 
ADPD2140BCP
ZN-R7 
photodiode 
 

-40 to 
85 °C 

8V I2C  
 

1 for 
$2.47 

Near Infrared Sensor: IR 
array primarily used to 
detect for infrared rays 
Spectral range from 800nm - 
1080nm 
 
Compatible with the 
ADPD1080 photometric 
front end. 

Adafruit 
AMG8833 8x8 
Thermal 
Camera Sensor 
 

Measu
ring 
temps 
of 0°C 

3V or 
5V 
micro
contr
oller 

 1 for 
$39.95 

8x8 array of IR thermal 
sensors. 
64 individual infrared 
temperature readings over 
I2C. Detect a human from a 
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to 
80°C  

or 
comp
uter. 

distance of up to 7 meters 
(23) feet. 

Adafruit 
MLX90640 
24x32 IR 
Thermal 
Camera 
Breakout - 110 
Degree FoV 
 

Measu
ring -
40°C 
to 
300°C 

3V or 
5V 
micro
contr
oller 

I2C 1 for 
$59.95 

24x32 array of IR thermal 
sensors. 110°x70° field of 
view 
 

Melexis 
Technology 
MLX90640 
thermal camera 
 

-40°C 
to 
85°C 

2.9V 
to 
3.6V 

I2C 1 for 
$39.95 

32X24 IR array of pixels. 2 
FOV options – 55°x35° and 
110°x75° 

 
 

4.3.4. Software Tools 
 
Software tools play an important role in the development of a working system. This section 
discusses the different tools utilized to design, develop, or prepare the system. All of the 
software used for the purpose of development will be listed here like CAD programs, 
Administrative tools, chat applications, and software development tools. 
 

4.3.5.1 CAD Tools 
 
Contained in this section are some of the CAD tools used for this project. CAD tools were 
used for the mechanical design of the structure of the project as well as the PCB and 
schematic design for the electrical components of the project. 
 
Fusion 360 & Solidworks 
Fusion 360 Student Edition was used to CAD and render the four preliminary mechanical 
designs for this project. Without mechanical designs for the project, the system will not 
function correctly. The mechanical design is almost as important as the electrical design 
for this project as the system must operate and exist outdoors with varying weather 
conditions and other hazards. Fusion 360 allows us to design parts that might need to be 
3D printed or machined so that we can complete this task ourselves or have it created for 
us. 
 
KiCAD 
KiCAD is used to make the schematics as it is open source, free, and provides all the 
tools needed to create any PCBs. Schematics are an important part to the development 
process as many bugs and errors are found at this stage and designed out of the system. 
Without schematic software, these problems may manifest into larger problems when the 
design is put to the test in real life. Furthermore, once money is spent on a faulty design 
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it cannot be recovered. It is essential that designs be worked out before moving from the 
schematic stage. The program then allows the conversion from schematic to PCB Layout. 
This will let us send the data to a manufacturing house and they will manufacture our 
PCBs for us. Lastly, the program allows the creation and modification of schematic 
symbols and footprints as well as the ability to import them from vendors or distributors 
that sell the products. This means we can get the most up to date data about the electrical 
components we will purchase. 

 

4.3.5.2 Administrative Tools 
 
Contained in this section are some of the administrative tools used for this project. 
Administrative tools are defined by us to be any application that helps in the creation of 
documentation, communication, or organization including, but not limited to, file storage 
on a computer. 
 
WhatsApp 
WhatsApp was chosen as our tool for general communication. It is simple and does not 
have many integrations as some other chat applications, but it is lightweight and allows 
for chatting from a computer or smartphone. This means that we can always 
communicate if necessary. Once a group is created, we can talk, and chat and it does not 
seem as if there are any limits on file or image uploads as other chat applications may 
have. Furthermore, most of our team already had the application, so it was a quicker way 
to get started than learning or downloading a new application. 
 
Microsoft Teams 
Teams is another communication tool we chose to do meetings online. It provides 
conference calls, video calls, screen sharing, and file sharing to help us organize and 
meet up in an efficient way. It is also accessible through our phones and computers which 
allows us to communicate easily at any time.  
The screen sharing feature lets us communicate and share our parts effectively during 
meetings. It also provides messaging and filing system to keep our works if needed. It 
can access our calendar by logging in using our knights’ email. Since it is accessible by 
using our knights’ email, we all have an account already made. Furthermore, it can utilize 
other Outlook features such as Word. We can also add other applications such as Trello 
as an add on. 
 
Trello 
Trello allows for task planning and scheduling so that everyone knows what project 
component is due at what time. This also allows each group member to schedule 
individual parts of the project so we can all see the big picture and stay organized. The 
many integrations of Trello allow us to do almost anything we want. Currently, we are 
using the Calendar integration so that it formats all our due dates into a calendar so that 
everything can be found quickly and easily. There is no confusion on when a deliverable 
is due.  
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In Trello, this is accomplished by creating a “Board” and then assigning “Cards” to that 
board. Each card can be assigned a due date and many different tags such as “In 
progress” or “Completed”. This allows us to see the status of each task and who is 
assigned as well as to store data from different meetings. We usually store meeting notes 
in Trello since all of our weekly meetings get scheduled there. 
 
Microsoft OneDrive 
OneDrive allows for use to easily share files together. The ease of one drive, compared 
to other tools like Google Drive is that OneDrive will sync files from the cloud to our 
computers directly. This means we can edit files and upload/download files directly from 
the file explorer. No need for a browser or external tool. The expansiveness of OneDrive 
also allows us to connect it to smart phones so that we can view documents on the fly. 
OneDrive has allowed us to just work on files and share files easily without an apparent 
“middleman” like Google.  
 
Microsoft Word 
Since we are using OneDrive, it became clear that we should also be using Microsoft 
office tools to work on our documentation. Word features a very comprehensive (but 
expansive) collaboration element so that we can all work on a document at the same 
time, but still have the power that Word provides normally offline. All the standard 
formatting tools exist, but in addition to that we can write comments and open up a 
collaborative chat with users currently editing a document. This means that we can quickly 
and easily discuss document changes and formatting changes without the need to go 
through other applications. It makes everything just that much easier to edit and work on.  
 
 

4.3.5.3 Software Development Tools 
 
Git 
Git is the de-facto tool for version control across software projects. Git works by tracking 
changes byte-by-byte to files within a directory. This is useful when multiple users are 
editing a file at the same time. The way Git structures itself is by using “branches” which 
a user will “checkout” to. When checking out to a branch, the user creates a local copy of 
the files stored/tracked in the remote repository of code. The code that is changed locally 
on the user’s computer is not the same as the code that’s in the remote repository. This 
is useful as the user can make any changes they want.  
 
If another user wants to make changes to the same file, they clone those changes which 
allows them to work on the same file, unencumbered. When these two users complete 
their modifications, they will “commit” and “push” these changes to the remote repository, 
allowing their changes to become public and Git will automatically “merge” the changes 
into the current working branch. As long as there are no conflicts, the changes are 
accepted and saved in the remote repository. If there are conflicts (i.e. modifications to 
the same place in the file) then the users must manually accept and merge those changes 
that are correct. Git can be used to track binary files, but any change to the file usually 
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results in a large change across each byte of the file thus causing the whole file to be 
updated. 
 
Atmel Studio 7 
Atmel Studio 7 is the IDE that is suggested to be used with the SAMR35. It includes a C 
and C++ compiler for the microcontroller, and so we will use it for programming, 
debugging, and writing code for the SAMR35. Atmel Studio 7 features a programmer 
which is beneficial as the compiler, code editor, debugger, and programmer are all in one 
software package.  
 
Python 
Python is one of the popular programming languages known for its ease of use. It has the 
simpler syntax and format compared to other languages such as C or Java. It is the main 
language used in the recent computer vision applications and offers abundant libraries 
for us to implement them in our system. Other well-known libraries such as OpenCV and 
Pytorch uses Python to implement computer vision. Most of the CNN (Convolutional 
Neural Network) models are trained and available in Python via GitHub. Tutorials and 
other guidance are available due to its popularity which will help us in debugging and 
constructing our code. It is easy to learn which will save us time and let us improve our 
system further. 
 
C++ 
C and C++ are the standard languages used in embedded programming. As such, C++ 
will be used to program the SAMR35. C++ has a lot of features and syntax taken from the 
C language but allows for classes and data structures to be built and used from the 
standard library that C does not. This means that it will be easier to maintain the software 
we write, and it should be easier to implement.  
C always followed the paradigm that nothing should be hidden and that it should have the 
simplest features so that the programmer is the one to implement all of the functionality. 
C++ Follows the paradigm of “C is a good foundation, but we can do better” and allows 
for a lot of expanded functionality that the C language does not provide. Other 
technologies like Rust were investigated, but C++ is a good mix between object-oriented 
software principles and embedded systems.  
 Atom 
Atom is simply a text editor that provides syntax highlighting for different software. Some 
of the software and text documents will be edited in Atom since Atom provides a lot of 
plugins for productivity.  
 
Putty 
Putty is a terminal emulator and serial console that allows for quick and easy connection 
to serial devices. When communicating with a device over UART, especially for 
debugging purposes, Putty will become invaluable. Since it is a free and open source 
program, it will have many features that we will find useful. Putty supports many different 
communication protocols other than serial communication like Raw, Telnet, Rlogin, and 
SSH. Since we are using a Raspberry Pi, it may be useful to use the serial console 
through the UART pins of the Raspberry Pi or if we are using any Raspberry Pi that is not 
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the Raspberry Pi Zero for testing and debugging, we could use SSH to communicate with 
it via Ethernet, assuming we are using windows computers and may not have the ability 
to SSH.  
 

4.4. LoRa 
 
This section covers the methodologies and lower level implementation of the LoRa 
modulation scheme.  
 

4.4.1. LoRa Overview and Definition of IoT 
 
A current “Buzz Word” all over the world is “IoT.” IoT stands for Internet of Things. A 
“Thing” in IoT Is some kind of device that is able to sense information about the world and 
transfer that data over a network. IoT devices share their data by connecting to an IoT 
gateway or other edge device where the data is sent to the cloud to be analyzed (Rouse, 
2020).  This connection together allows for a bit of power as the data that is collected can 
be interpreted in many different ways. The ways it is interpreted defines what kind of 
information someone can learn from that data. 
 
LoRa, literally “Long Range”, is a proprietary spread spectrum modulation scheme that is 
derivative of Chirp Spread Spectrum modulation (CSS) which trades data rate for 
sensitivity within a fixed channel bandwidth (Semtech, 2015) The idea is create a physical 
layer protocol that is separate from higher layer implementations which allow the protocol 
to be generically used with new and existing devices.  
LoRa is bandwidth scalable, low power, and long range modulation technique. It allows a 
very large link budget that exceeds conventional FSK (Semtech, 2015).  
 

4.4.2. Quick Discussion of Common Modulation Techniques 
 
Modulation is the act of changing a carrier signal to transmit information. A Modulator will 
turn digital data into an analog wireless waveform and a Demodulator will take the 
wireless waveform and convert it back to a digital signal. The goal is to convert this digital 
signal into something that can be sent wirelessly without interference to some other 
device amidst all the electromagnetic signals currently in the air. 
 
This section quickly covers the three prominent modulation techniques. Modulation 
techniques as a whole are not limited to these three and may, in fact, incorporate multiple 
different schemes or modifications on these schemes to enhance different features of 
their wireless network. This section does not compare or contrast the different methods 
and does not explain the advantages of each, only the different methodologies as a whole 
to understand LoRa and how its modification on Chirp Spread Spectrum Modulation is 
relevant. 
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Amplitude Shift Keying 
Amplitude Shift Keying (ASK) works on the principle that a digital 1 map to the presence 
of a signal at some amplitude while a digital 0 maps to the absence of that signal. A device 
can send a binary symbol by changing the order of presence to absence of this signal. A 
simple view of this technique is for every digital “1” that the device sends, it turns a signal 
on and for every digital “0” the device sends, it turns the signal off. 
 
Frequency Shift Keying 
A popular modulation technique. Similar to the above, Frequency Shift Keying (FSK) 
works on the principle that the two digital states are represented by a constant signal that 
varies in frequency. By changing between a high frequency signal to a lower frequency 
signal, the device can transmit a 0 or 1. 
 
Phase Shift Keying 
The device, in Phase Shift Keying (PSK), will alter the phase of a signal when trying to 
transmit information. For example, the signal might be at some frequency constantly, but 
if it is a positive signal it might mean a digital “0” but when changed to the negative 
waveform of that signal it means a digital “1”.  
 

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa 
 
LoRa uses a modified version of Chirp Spread Spectrum Modulation (CSS). Chirp Spread 
Spectrum was developed for radar applications in the 1940’s (Semtech, 2015). It has 
become more popular recently as it is low power and great sensitivity. Unlike other 
modulation techniques, it seems to have the inherent ability to resist multipath fading, 
Doppler effects, and interference in the same bands. The idea is that a “chirp” has a 
constant amplitude but the frequency passes through the entire bandwidth in a certain 
time. If the frequency increases it’s called an “up-chirp” and if the frequency changes from 
highest to lowest it is considered a “down-chirp” (Ghoslya, n.d.). 
 
The alteration between up-chirps and down-chirps create the symbols for LoRa.  
 

 
Figure  21: Spectrogram of LoRa physical layer (Ghoslya, n.d.) 
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The image above shows a LoRa frame on the physical layer. The frame consists of 8 
preamble symbols, 2 synchronization symbols, the physical payload, and an optional 
CRC. The symbols are demodulated as 0’s and 1’s which cat be any kind of packet as 
defined by the project.  
 
Lastly, an interesting feature of LoRa is the ability to change the Symbol Rate. By 
changing the “spreading factor” used in the LoRa implementation, the device can change 
the properties of the signal. LoRa uses three different bandwidths: 125kHz, 250kHz, and 
500kHz. As a quick overview of all of this, incrementing the spreading factor by 1 roughly 
doubles the time to send the symbol. Therefore, a lower spreading factor results in a 
higher data rate and a higher spreading factor results in a longer transmission. Since 
there is this relationship, the Symbol Rate can be defined as this relationship here: 
 
 

𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟
 

 
 
This means the device should use a higher bandwidth and lower spreading factor to get 
the highest symbol rate. Doing so, however may affect the power consumption during 
transmission since time to transmit increases and/or different parts of the internal circuit 
may be active at different intervals. 

5. Design 
 
This section is a high-level overview of the fire detection system. In this section, there is 
an overview of the major function blocks, the use cases, and descriptions of the hardware 
and software sub-systems. The design should take components from all the previous 
sections as well as considering our design goals and motivation to create the final product. 

 

5.1. Use Cases 
 
The system, for all intents and purposes, will act autonomous but users still must interact 
with the system for the goal of the system to be successful. These uses are shown in the 
following sections. 
 

5.1.1. Uses Case Diagram 
 
Figure 19 below contains the use case for the fire detection system. There are three uses 
for the system: the Firewatch Official, the Installer, and a Networked Device. All three of 
these users will have to interact with the system. 
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Figure  22: Use Case Diagram 

 

5.1.2. Functional Design 
 
The system is designed so that a fire watch official can check notifications from the 
system. These notifications will detail information about the mesh network and the 
individual devices connected to it. The fire-watch official can do no more than check the 
notifications and ignore them if he chooses. The Networked Devices and Installation 
personnel are the only users who may send notifications throughout the mesh network. 
The Installer will connect a device to the network and then may send a test notification 
throughout the system if he chooses. A Networked Device will evaluate the sensor and 
network data and choose to pass that notification to the mesh network if it meets certain 
criteria 

 

5.2. Hardware Design 
 
The hardware design refers to the electrical hardware that will be present within the 
system. The hardware must work autonomously with very few failures at all times (day 
and night) to align with our design goals and motivations. 
 

5.2.1. Hardware Block Diagram 
 
The following diagram shows the hardware design sub-systems. There are 4 major 
subsystems. The top row of blocks shows the power sub-system. This subsystem is 
comprised of the solar panels, battery charging, and battery protection. This filters down 
into power regulation to create the specific power rails necessary to power the sensors, 
controllers, and the RF circuit. The 3 other subsystems comprise of the Sensor circuits, 
the sensor control and processing, and the Network control and processing. These parts 
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of the circuit are dominated by software instead of electrical considerations. If the serial 
communication circuits and power circuits are fine-tuned, these 3 subsystems will work 
well. The antenna and RF design must have care taken as RF antenna design must follow 
specific rules. 

 

 
Figure  23: Hardware Design Block Diagram 

 
 

5.2.2. Microcontroller and Processing Device 
 
The system will make use of two processing devices/controllers. The SAMR35 and the 
Raspberry Pi Zero. These two devices will allow for much simpler interfacing and 
separation of responsibilities for the system. This will also allow our power consumption 
to be a minimum during down time but the simplicity of programming for our up time. The 
SAMR35’s responsibilities include the Network control and processing. It will handle 
communications within the LoRa network and the connection to the network. The 
Raspberry Pi Zero will facilitate the sensor readings and the formation of packets. The 
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root node must contain a SAMR35 to process root node packets, but once it retrieves the 
data out of the SAMR35, any device can be used (such as another embedded system or 
a standalone computer). The SAMR35 uses the SX1276 Low Power Long Range 
Transceiver. This module incorporates an FSK modem and a LoRa modem.  
The device can operate in the 137MHz to 1020MHz range and is complient with 
IEEE802.15.4g. Since this module is built in to the SAMR35, it does not have to be a 
standalone device.  
 

5.2.3. Hardware Schematics 
 
The following sections are descriptions and diagrams of the preliminary hardware 
schematics for the project. There are 4 sub-systems regarding hardware: Network, 
Raspberry Pi, Sensor, and Power. These 4 sub-systems must work together to do the 
final goal of detecting a fire. 
 

5.2.3.1. Preliminary RF/Network Sub System Schematics 
 

 
Figure  24: RF Switch Schematic 

 
The schematic above in Figure 21 handles switching the RF signals so that we can use 
a single antenna. In RX mode, the circuit is slightly different in the way it filters everything 
than in TX mode. Furthermore, this allows us to have two separate circuits on the TX side 
to select between different bands. For now, the idea is to solder a resistor between GND 
or VDD to select the band. The schematic for the SAMR35 in Figure 22 is simple as of 
right now, since it is only the minimal parts to facilitate the RF side of everything and the 
chip function. It has the UART ports accessible as well as connections to the RF switch. 
Everything must be 50-Ohm impedance matched. 
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Figure  25: SAMR35 Preliminary Schematic 

5.2.3.2. Preliminary Raspberry Pi System Schematics 
 
Since the SAMR35 will do a lot of the RF work, the Raspberry Pi will do a lot of the heavy 
lifting for interacting with the sensors. It will be connected to the SAMR35 via serial 
connections and to all the sensors via I2C or SPI connections. This connection will allow 
it to easily collect data from all the sensors. The connections are shown in Figure 23. 
Ideally, the Raspberry pi is turned off most of the time and will be powered up only when 
it needs to do a sensor reading. It is possible though, if power consumption becomes an 
issue, that the SAMR35 does all the sensor readings and reports them to the Pi when 
applicable.  

 
 

Figure  26: Raspberry Pi Connection Preliminary Schematic 
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5.2.3.3. Preliminary Power System Schematics 
 

The initial design for the power system is to have the solar panel array hooked to a voltage 
simulator that regulates the 12-volt nominal source to a 5 volt 2 amp max source. This is 
done to handle the irregularities with solar radiation levels throughout the day caused 
from varying reasons. This keeps the charging IC constantly running at the most efficient 
state. To maintain a constant output the right solar panel is needed for this system. 

 
Figure  27: Voltage Regulator Schematic 

 
For the solar panel itself the panel must be able to output 12 volts nominally to supply the 
regulator and must have redundancies to help handle the changing solar radiation levels 
throughout the day. For this reason, a panel with many solar cells in series and parallel 
is needed to help with these issues. A panel similar in design to the one below is needed 
for this project. A panel like this has many cells linked up in series and then those sets of 
cells are then paralleled to prevent one cell getting covered or one cell breaking causing 
the entire panel to go bad and stop supplying power to the system. 

 

 
Figure  28: Top View Solar Panels 
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5.2.3.4. Preliminary Sensor Circuit Schematics 
 
This section provides an overview of the initial sensor schematics for gas, smoke, and 
flame detection. These sensors are still undergoing examination and testing to determine 
their feasibility for the system.  
 
Gas Sensor 
 
The BME680 by BOSCH can detect ambient temperature, humidity, and barometric 
pressure and, most importantly, a range of gasses such volatile organic compounds. The 
sensor is also able to provide the air quality using an index provided below. This gas 
sensor can use both I2C and SPI communication protocols. However, for the schematic 
above was designed to select I2C.  
 

The sensor can detect a range of b-VOCs such as Ethane, Isoprene, Ethanol, Acetone, 
and Carbon Monoxide. The output includes raw pressure, raw temperature, raw relative 
humidity, raw gas resistance, sensor-compensated temperature in Celsius, sensor-
compensated relative humidity (%), sensor compensated gas resistance (Ohm), Index for 
Air Quality, CO2 equivalent in ppm, b-VOC (ppm), accuracy status of IAQ, gas 
percentage based on the individual sensor history, as well operational parameters such 
as stabilization time status and run in status.   

 
 

Figure  30: Air Quality Table (Bosch) 

Figure  29: Gas Sensor Schematic 
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Smoke Sensor 

For smoke detection, the RE46C141 CMOS photoelectric smoke detector will potentially 
be integrated into the system. The design includes a photo amplifier to use with an 
infrared emitter/detector in pin 3 (Detect). The internal oscillator allows for smoke 
detection to occur for 100us every 8.1 seconds; this helps to minimize standby current. 
When smoke is sensed, the detection rate is increased for verification purposes. Every 
32 seconds, the device checks for low battery and chamber integrity. The smoke chamber 
is located between pin 3 and 6 and is illustrated below. The internal comparator compares 
the photo-amp’s output to an internal reference voltage. When the smoke conditions are 
met, the device triggers the local alarm. This device requires an supply voltage for 
approximately 12.5V, which must be taken into consideration when designing the power 
supply rails. The RE46C190 may be used instead since it fulfils the power requirement 
and is also designed for similar applications.  

 

 
Figure  32: Smoke chamber 

Figure  31: Smoke Sensor Schematic 
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Flame Sensor 
 

Two methods of flame detection will be used: non-visual and visual techniques. The non-
visual technique will use the ADPD2140 infrared light angle sensor by Analog. This 
sensor includes a sensor array for 2-axis light angle measurement. It is able to provide a 
linear response to the angle of incident light within +/- 5° with an angular field of +/- 35°. 
This sensor is typically used in robotics to allow the robot to follow a beacon of LED or 
remote emitting infrared light for the robot to follow. In this application, the beacon will be 
the fire emitting infrared waves. The sensor can detect infrared rays from 800nm to 
1080nm. More importantly this device has a built-in visible light blocking optical filter that 
is able to filter unwanted visible light such as sunlight and indoor lighting.  

 

 
The ADPD2140 will be connected to the ADPD1080 front end which will process the data 
from the sensor array. More importantly, the ADPD1080 will communicate using I2C to 
send the data to the processor for data processing. This combination allows for additional 
ambient light rejection, low power operation, and analog-to-digital conversion of the 
ADPD2140 output signals.  
 
 

Figure  33: NIR Sensor Schematic 
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The thermal camera will potentially be used as a visual technique for flame detection 
depending on budget allowance. The MLX90640 thermal camera by Melexis 
Technologies is small and low cost 32x24 pixel infrared sensor array that is I2C 
compatible. It can operate from -40°C - 85°C and is able to detect temperatures from -
40°C - 300°C. The sensors come readily calibrated from the factory and contain 768 FIR 
pixels. Below is a diagram while illustrates the pixel position and the whole field of view. 
The field of view for the X axis can be in 110° or 55°, and for the Y-axis 75° or 35°, 
respectively.  The noise of the pixels for high temperatures is lower than that for low 
temperatures. Pixels in the corner of the frame will be nosier compared to the sensors in 
the middle of the frame.  

 

 
Figure  34: Thermal Camera Sensor Array (Melexis, 2012) 
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The schematic below is a simple representation of the electrical design. A 1k ohm resistor 
will most likely need to be connected between the SCL and the MCU input, as well as 
between SDA and the MCU. A 10uF and 100nF capacitors will eventually be integrated 
to VDD in parallel as recommended by the datasheet.  
 
The device can be used to calculate temperature a well as used in “image mode”. This 
would allow for the thermal image to be obtained which will be used for visual flame 
detection. The computation flow for this would include calculating supply voltage for the 
pixels, ambient temperature, gain compensation, IR data compensation, IR data gradient 
compensation, normalizing to sensitivity, and finally image (data) processing. Image 
mode opens the scope of integrating concepts and techniques from machine learning to 
train the system to identify flames.  

 
 

 
Figure  35: Thermal Camera Schematic 

 

5.2.4. Mechanical Design 
 

 
The following mechanical designs are potential ideas on how the system will be mounted. 
The designs each have 2 components: The mounting apparatus and the system 
functional area. The functional area, for these preliminary designs is represented by a 3D 
cube. The estimated size of this area is only 15 centimeters. The 3D cube is meant as a 
guide to see the area in which we expect the structure of the system to occupy. It is not 
necessarily to scale. The system is designed in such a way that it is mounted to a tree or 
other tall structure. The first design in Figure 21 simply gets mounted to the side of the 
structure. It has 6 screw holes to allow for mounting.  And is the simplest and quickest to 
install. This works great for a small system and large trees as the tree’s trunk will appear 
as a flat surface at small scales.  
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The second design, shown in Figure 22, has a large loop that gets wrapped around 
something that would fasten the system to a tree. This could be the trunk of the tree or a 
branch. It is the simplest design to install as it just requires one point to lock the 
mechanism to the surface. A downside to this design would present itself for items with a 
large radius as the band would have to be large enough to support the device. This design 
is scalable with almost any size of the system, big or small. 
 

 

Figure  36: Mechanical Design A 

Figure  37: Mechanical Design B 
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The design idea represented in Figure 23 would get clamped around a tree branch high 
in the tree. It is not designed to be clamped around the trunk of a tree. This design would 
be attached by clamping the bottom part to a branch like a claw. A difficulty of installation 
might appear when trying to install the system in a high/tall structure and mounting it 
vertically. Due to the longer arm on the design, it creates a stronger moment of inertia 
and could prove difficult to implement with a heavy device. 

 

Finally, the last design shown in Figure 24 is hung on a tree branch or other horizontal 
structure. This is a great design for simplicity. It allows the installer to simply hang the 
device wherever it needs to be. For quick/temporary deployments it might be the best 
solution. For long term deployments, this solution may need some form of bracket or 
screws to be inserted to lock the device to its structure so uncontrolled scenarios like 
weather or animals cannot move or knock the device off its structure. 

Figure  38: Mechanical Design C 

Figure  39: Mechanical Design D 
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5.3. Software Design 
 
Similar to the hardware design, the software design must be as reliable as possible and 
have minimal failures. When a failure occurs, it must also be able to correct for those 
failures or allow for itself to be ignored or disabled until a time when it can be replaced. 
The following subsections discuss the software designs and the methodology in place to 
make the controllers do their job. 
 

5.3.1. Design Methodology 
 
The design methodology that we are to employ for this project is to keep every function 
compartmentalized to its own controller. There are two controllers: Sensors/Fire detection 
and Network. The Network controller’s job is to join and manage its connection to the 
network while the sensor controller’s job is only to read all the sensors and determine if 
there is a fire.  

 
This idea of keeping the functionality partitioned among the hardware allows for simpler 
software to be written and for the system to use the least amount of power possible during 
idle. The only interaction between these two controllers is the sensors controller sending 
a notification to the network controller that there is a fire, and possibly a small message 
string to send along with it. It is possible that other binary data is sent (such as raw data) 
and so the two systems will need to be able to communicate simply and effectively (such 
as through the SPI protocol or UART protocol). 

 
Network Controller: 
The network controller is responsible for making a mapping between itself and the other 
controllers already in the network. When joining a network, it will beacon a join request 
and the controllers in its vicinity will respond with linking information. This is to ensure that 
the controllers can be in the same network and to avoid duplicate packets being sent. The 
controller will then continuously listen for packets of data and will absorb packets until a 
timeout, or the sending controller decides it is done sending. 
 
At this point, the network controller will send packets to all in its network map (except for 
the sender) to attempt to get the data back to the root controller. If it hears any repeated 
packets from another controller, then it will discard them. To arbitrate between a busy 
network, random delays will be introduced to avoid controllers from responding to other 
controllers whose messages are already being sent. 
 
A second function of the network controller is to wake up the Sensor Controller, which 
should be shutdown at all times. The Sensor Controller will be woken up in 2 different 
cases: A fire has been detected or a timeout has been triggered. This is to avoid 
unnecessary power consumption. The Network Controller may or may not send a 
notification through the network that the Sensor Controller is turned on or off at any time. 
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Sensor Controller: 
The sensor controller is to stay asleep/shutdown when not reading sensor data or 
processing the sensor data. When the Sensor Controller is complete processing its data 
it will send a shutdown notice to the Network Controller so it may configure its timers or 
send notifications to the network. The Sensor Controller will read all available sensors on 
its communication busses and read data from a camera if applicable. Using this data, it 
will decide if there is a fire in its vicinity or if there is not a fire. It will report this decision to 
the Network Controller and prepare to shut down. 
 

5.3.2. Software Block Diagram 
 
The software block diagram shown in the figure below is the basic design that we are 
following for the full software package of the system. This diagram does not differentiate 
between the network controller or the sensor controller, so it appears as one conclusive 
system. In reality, the “Main Loop” and the Network side of the diagram will be managed 
by the SAMR35 and the Sensor Data side of the diagram will be managed by the 
Raspberry Pi. The data path between the two systems will be worked out as an “on chip” 
communication bus between the two systems.  

 
Figure  40: Software Design Block Diagram 
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5.3.3. Network Software 
5.3.3.1. Network Flow 
This section describes the “Network Flow” of the system. The network, in normal 
circumstances, will not be busy. Most of the traffic exists when broadcasting a message 
to or from the root node as it must propagate through the network to its destination. The 
image below describes a Join Request case. 
 

 
Figure  41: Join Request flow diagram 

When a Join Request is received the currently “Not Connected Node” Will broadcast a 
Join Message and all connected nodes in the vicinity will respond with an 
acknowledgement. This acknowledgement is important so the previously disconnected 
node knows that another node can hear the message. After some time, the node will send 
a generic message to the root to request for an acknowledgement from the root. As far 
as all the connected nodes are aware, this new node is sending messages through the 
network but has not “joined” the network. Once the not connected node hears the 
acknowledgement from the root node, it will consider itself “Joined” to the network and 
will now attempt to forward packets in the system. A “Not Connected Node” can send 
messages through the network but will not forward messages through it. 
Acknowledgements are generally not required in our mech scheme, but without them, 
there is no way for the node to know that it is correctly connected to the network.  
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In this section, only two figures are present to describe the flow of packets in the network. 
Other kinds of messages follow similar protocols as these two messages in some way. In 
one of the flow charts in section 5.3.4 Software Events & Flow, a generic case is reviewed 
where a generic message is received. The figure below describes a “Fire Packet” which 
follows a similar protocol as the generic case, but with some extra work. 
 

 
Figure  42: Fire Packet flow diagram 

When a fire is detected at a “far node”, that node will send a message to the root alerting 
of the fire to the nodes closest to it in a broadcast. These “close nodes” will forward the 
fire found message to the root node. For every valid fire packet received, the node will 
wake up its sensors and begin looking for a fire to report. In this time, it will continue to 
normally forward packets as necessary. If the “close nodes” detect fires in their area as 
well, they will send the “fire found” message to the root node as well. When the original 
“far node” receives an acknowledgement, it will stop sending “Fire Found” packets 
regularly. This “stop” condition is based on two things: Acknowledgements and Timeouts. 
To stop the network from getting busy, the sending nodes of a fire message will stop 
sending packets if and only if an acknowledgement to stop has been received or a 
timeout. Eventually, all the nodes will stop reporting the fire continuously and will wait 
some amount of time before reporting the fire. 
 
So far, all messages have been treated as asynchronous and can send at any time. In 
the event of a busy network or hot spot (very many nodes in a small area) then some kind 
of network arbitration will be necessary.  
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First, it is important to understand that each node will maintain a packet buffer to store 
received messages before sending. The node will hold onto these packets until it is time 
to forward them. This buffer only contains packets that need to be transmitted, not packets 
that are invalid or are internally processed. This buffer will need to be sufficiently sized to 
handle a busy network with many forwarded packets. To arbitrate who may send, nodes 
that receive packets that require transmitting a message (such as forwarding the 
message) will wait a random amount of time before sending their message. Each node 
will assume that after this amount of time, they may send a packet. Receiving a message 
during this delay will multiply the timer by some factor to ensure that the waiting node 
does not interrupt a current transaction. Ideally, each node maintains its own state such 
that it can forward messages without losing state while waiting for an acknowledgement 
or response. This scheme alone sounds like it may work but runs the risk of packets never 
forwarding through the network if the network is busy. The packets will eventually be 
forwarded since the network will eventually go silent and packets will slowly trickle through 
the system until they all go through. Packets going through the system will be assigned 
some priority (on a first come first serve bases) that is supplemented by the type of packet 
that comes through (for example a “Fire Packet” might have higher priority than a “Join 
Request” Packet). Higher priority messages are sent first before lower priority messages. 
Lastly, messages that sit in the buffer longer than other messages will accrue a higher 
priority than their initial priority. This ensures that packets, eventually, get through the 
system. Some packets may not gain a higher priority past some point. This allows for 
some packets to always have a higher priority overall to other packets (for example a 
“Join Request” might always have a higher overall priority than binary data). 
 
The last bit of arbitration is to ignore repeated and invalid packets. Since it is a mesh 
network with different nodes receiving different messages, packets that are repeat 
packets will be ignored by the receiving node. In this case, if multiple nodes can hear 
each other, they do not send packets in a cyclic pattern and then get stuck in a loop of 
transmissions. If a packet is received from the same origin multiple times it will be 
considered invalid and will be ignored. This invalid state will persist for some time to avoid 
packets getting through. After enough time has passed for that packet, the state will no 
longer be considered invalid and a repeated packet can get through. Packets that come 
from the same sender will be allowed to pass through multiple times to allow for valid 
repeat transmissions. This means that before forwarding a packet, the node must check 
the origin of the packet and the sender. If the sender and origin are the same, or the origin 
has not been heard from before, then the packet is valid. If the packet has come from that 
origin before and the sender is different than the first sender, then the packet is ignored 
and considered invalid. This methodology, in theory, creates multiple paths from the origin 
point to the root where repeated packets are also sent along this path. The quickest path 
to the root node is the path that will prevail in transmitting the message along that path. 
Acknowledgements will get forwarded along this path. It is a stretch goal that the original 
join request and subsequent heartbeat packets will determine this ideal path and will set 
it up as the primary path that messages get sent along. This may avoid issues with 
clogging the network and may act as a form of load balancing over time.  
The system will not, initially, support load balancing of this form unless it is found to be 
necessary within the algorithm to do so. 
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5.3.3.2. Network State Machine 
 
This section discusses the different states that the network controller has. To make 
software easier to implement, a state machine will be used for the embedded software 
design. This state machine will allow the network controller to understand its state and 
environment and keep the code compartmentalized and simpler to maintain. The state 
diagram below shows the transitions between states.  
 

 
Figure  43: Network Control State Diagram 

The state transitions are complex and there are many of them. Structuring the software 
in this way allows each individual state to be simple code compared to complex code. 
The initial state is the Network state. This state handles storing all network data to non-
volatile memory if it changes and to determine if we are in a valid network. “Heartbeat” 
packets may be sent in this state as well. Notice that there is no state for receiving packets 
on the network. This is because receiving packets will be serviced in an interrupt. 
Interrupts will be discussed in a later section. After the Network state, the system 
transitions to “Timer_Reset” which resets the timer to its delay time.  
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From here, if there are packets to send then the system will do so in the “Send_Buffer” 
state. If everything is ready to go, or the system has been sending packets for too long 
then the “Waiting” state is invoked. During this state, nothing happens. A loop will wait 
until the timer is done running to move on. The next state in normal operation is the 
“Pi_Boot” state. This state will turn on the Raspberry Pi and will wait for the Raspberry Pi 
to acknowledge that it has turned on. If the raspberry pi does not respond, within some 
amount of time, the network controller will transition back to the Network state. Otherwise, 
with a successful turn on sequence, the network controller transitions to “Pi_Active”.  
 
This state handles servicing the Request Queue and the request-respond structure. After 
each request, a response is expected from the Raspberry Pi. This response, in turn, gets 
immediately stored in the packet buffer. This is repeated until the packet buffer is full, or 
there is no more data to send. From that point, the network controller will go into the 
“Pi_Shutdown” state and send a “Finished” request and will only wait for the shutdown 
notification. The Raspberry Pi may do anything until that point. The once the Pi responds, 
the controller will enter the “Send_Buffer” state and attempt to empty the packet buffer. 
Assuming everything is good and the buffer is empty, the controller will transition back to 
the “Network” state and everything begins again. If the network is busy during the 
“Send_Buffer” state, then the controller might transition to the “Hold_Buffer” state for 
some time. If it cannot get a chance to empty the packet queue within some amount of 
time then a timeout will occur and the Network state will immediately be transitioned to. 
The table below describes the different states in a more concise manner. 
 

State Next State Transition 
Condition 

Previous State Description 

Network Timer_Reset A network has 
been joined 

Initialization Saves Network 
State and other 
tasks 

Timer_Reset Waiting Buffer is empty 
& Timer is not 
completed or 
Timeout 

Network Starts Timer for 
waking up 
Raspberry Pi 

Send_Buffer Buffer is not 
empty 

Network_Join Timer_Reset A network has 
been joined 

Join Interrupt Joins the 
Network 
 

Waiting Pi_Boot Timer interrupt 
is fired 

Timer_Reset Waits for 
interrupt to fire 
from timer 
 

Pi_Boot Pi_Active Pi responds Waiting Turn on the 
Raspberry Pi Network Pi does not 

respond 

Pi_Active Send_Buffer Packet buffer is 
full 

Pi_Boot 
Send_Buffer 



64 
 

Pi_Shutdown Done sending 
data 

Communicate 
with Raspberry 
Pi 

Pi_Shutdown Send_Buffer Pi sends 
shutdown 
notification 

Pi_Active Turn off the 
Raspberry Pi 

Send_Buffer Hold_Buffer Network busy Pi_Shutdown 
Pi_Active 
Timer_Reset 
Hold_Buffer 

Send packets 
from the packet 
buffer 

Network Pi is turned off 

Pi_Active Pi is turned on 

Hold_Buffer Send_Buffer Network ready Send_Buffer 
 

Wait until 
network is 
ready 

Network Timeout 

Table 10: State Transitions 

5.3.3.3. Interrupt Based Events 
The state machine described in the previous section is the main portion of the network 
controller. The other part of the network controller is related to the interrupts fired. There 
will be a few interrupts that are needed to handle everything directly. The LoRa 
transceiver the system uses only contains a 256 byte RAM data buffer. This means that 
when data is received by the LoRa modem, we must service that data immediately. The 
system can monitor up to 5 interrupts in the LoRa transceiver with configurable IO lines, 
as well as different interrupts directly relating to the SAMR35. When an interrupt is 
detected from the LoRa transceiver, an interrupt service routine will be fired that reads 
the transceiver’s data and stores it in memory. There are three ways to handle incoming 
data.  
 
The optimal solution will most likely be a mix of the three. The first way is to immediately 
service the packet. Packets that are to be forwarded will most like be serviced immediately 
and attempted to be forwarded. The second way is to service the packet but store the 
network packet response in the packet buffer and send it later in a different state. Likely, 
this is the method to handle non-forwarded packets. They will be serviced eventually, but 
not immediately. This may help with network congestion as there will be a decent delay 
before packets are sent through the network. Lastly, the received packets could be stored 
locally and ignored at first. Eventually these packets would get serviced in a dedicated 
state for them. This option will only be used if there is a significant amount of time lost by 
the waiting state in which this time will be used to process the packets. For now, received 
packets will be immediately serviced with network activity only happening for forwarded 
packets. 
 
The second kind of interrupt that is generated is a button that causes the system to 
attempt to join a network. When the button is pushed the “Join” protocol is initiated. 
Overall, a node should never be added to the network unless there is a user attempting 
to install new nodes. In the nominal case, nodes do not need to join the network by 
themselves. Pushing this button will reset all the network data and re-randomize any of 
the unique values/keys in the system. It does this by setting the next state to be the 
“Network_Join” state. This state handles all of the join protocol and clearing of values. 
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In conclusion, there are only two major interrupt service routines that may be executed at 
any time: Received packets and Join Protocol. Any other interrupts that are monitored will 
be polled in their registers and used as a wait/delay. 
 

5.3.4. Software Events & Flow 
This section discusses the software events and flow that happens in the system. It 
includes charts and descriptions of both parts of the software system: The SAMR35 and 
Raspberry Pi. 
 

 
Figure  44: General software flow when power is applied to the system 

The image above is the process the system takes when power is applied to the system. 
Once the SAMR35 is ready to begin running instructions, it begins this process. First it 
must check if it has joined a network already. If it has joined a network already, then it 
skips the join process. Skipping the join processes is critical to not get stuck in the edge 
case where it can be heard by the network but can not receive messages. In this case, it 
can still send messages even though it is not “joined” to the network. If the system was 
not reset or trying to join a network, then it waits for a user to initiate a join by pushing a 
button on the device. When pushed (unless requested by the root node to join the 
network), the system will send a join request to the network. During this time the node will 
take a randomly generated UID and will broadcast this UID to the network. An 
acknowledgement is expected from at least one network node which will confirm the UID 
and allow the node to attempt to send a packet to the root node. If an acknowledgement 
is received and claims that a UID is invalid, the system will select a new UID and try again. 
This is rare and shouldn’t happen. Once a valid acknowledgement is received, the node 
waits to hear the acknowledgement from adjacent nodes and then transmits a packet to 
be forwarded to the root node. As mentioned in the last section, it is a stretch goal at this 
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point that the node set up some kind of path memory so that the network can decide on 
some kind of load balancing mechanic. Once the root node acknowledges this new node, 
it will be considered “joined” to the network and can begin forwarding messages. 
 

 
Figure  45: Raspberry Pi Flow 

 
Once the system has been turned on and joined to a network, it will initialize its interrupts 
and timers and begin a timer. This timer will be set to turn on the Raspberry Pi. Other 
timers may be created to monitor health of the system as well as sending network packets 
to the network. The most important timer, however, would be the Raspberry Pi timer. 
When the Raspberry Pi is turned on, it will begin reading its sensors and determining if 
there is a fire. The Raspberry Pi will then report this data to the network controller and the 
network controller will decide whether or not to transmit the data. During this time, after it 
has determined if there is a fire or not, the Network controller may also pass packets to 
the Raspberry Pi if deemed necessary by other packets sent from the root node. This 
may be control packets or requests for data. The data will be accumulated by the Network 
Controller from the Raspberry Pi and it will then tell the Raspberry Pi it is done with it. The 
Raspberry Pi will determine if it is to shutdown or not and then will alert the SAMR35 that 
it is shutting down. When it is shutdown, the SAMR35 will remove power to the Raspberry 
Pi, as shown in the figure below.  
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Figure  46: Raspberry Pi - Network Controller Communication Diagram 

Another important aspect of the system is the actions to be taken when a message is 
received. There are many actions that could be taken based on many different parts of 
the packet that is sent to the node. All in all, there are 4 major conditions to check before 
deciding what to do with a packet. The first action is checking the CRC. If the CRC is bad, 
the packet is rejected. A stretch goal may be to send back a negative acknowledgement 
so that the packet can be re-transmitted. This will only be implemented if time permits or 
it is deemed necessary due to too many error events with communication over wireless. 
Otherwise the packet is rejected, and no action is taken. The next conditions that matter 
are if the message’s destination is the root, the current node, or if it is a join request. If it 
is neither of these things the packet is rejected.  This is so the network is not clogged by 
forwarded packets that are unnecessary. From the perspective of the node, all other non-
adjacent nodes are hidden. If it receives a message for one of those nodes, it is 
considered an invalid packet and ignores it. No node can transmit to a node that is 
abstracted by one or more layer. Any node always knows of the root node. 
 

 
Figure  47: Known Connections Diagram – Mesh 
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If the packet is a packet that must be dealt with by the receiving node, then the node will 
determine what kind of reaction is necessary. Sometimes an acknowledgement may be 
necessary and at this time the node will broadcast that acknowledgement. Special 
consideration is taken for a fire message as this message requires the system to wake 
up its sensors and check for a fire in the local area. See the figure below for more 
information on the actions to take fore messages that are received by a node. Most 
messages require some kind of transmission to be made afterwards. 

 

 
Figure  48: Actions taken on a Message Received event 

 
The Raspberry Pi is an important part of the system as it determines if a fire exists or 
does not. From a “black box” perspective, the network controller will periodically ask “is 
there a fire to report?” and the raspberry pi responds with an answer. This kind of 
“request” structure is important as the network controller may have stored request packets 
in an internal buffer and there may be multiple tasks for the raspberry pi to complete when 
it is ready to receive requests. This methodology allows for multiple groups of data to be 
grouped up on the network controller and sent, one at a time, to the Raspberry Pi to 
process. Once the Raspberry Pi has serviced all the tasks sent to it, the network controller 
will send a “Finished” request. This request informs the Raspberry Pi that the network 
controller has nothing else to request and that the requests have stopped until the next 
startup. It is up to the Raspberry Pi to decide if it is to shutdown or read sensors or do 
whatever it needs to do. Prior to shutdown, the Raspberry Pi will send a “shutdown 
notification” to the network controller to inform it that it is done. From this point, the 
Raspberry Pi does not need to wait for the network controller and can immediately 
shutdown. 



69 
 

 
 

Figure  49: Raspberry Pi decision making 

 

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss 
 
The system will store some information in non-volatile memory to ensure that upon power 
loss all configuration items stay intact. Power is removed from the Sensor Controller after 
it decides that it no longer has any tasks to complete. Therefore, any machine learning, 
image sensing, and previous sensed data (with regards to detection confidence) must be 
saved to non-volatile memory prior to shut down conditions. The Network Controller, on 
the other hand, only saves its network map to non-volatile memory and some statistic 
counters. All other data is considered volatile and can be changed. This decision caries 
the implication that if the network is busy and power is unexpectedly removed from the 
network controller, all pending packets will be lost. These packets cannot be recovered. 
Ideally, however, the network can recover from this immediately since all nodes can 
forward all packets to the root. In this case, a new route may be found by the network. If 
the network is not created with this in mind by the people installing the network. The node 
may not be able to transmit to any other nodes. Packets will be lost with no chance of 
recovery in this case so care should be taken when setting up a network. 
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Figure  50: Lost Packets Diagram 

The Raspberry Pi will also store data in a non-volatile way. This is important because the 
models used to detect fires will only improve over time. Therefore, current conditions must 
be saved in such a way that when power is lost, we do not lose the current state or the 
previous conditions. When the Raspberry Pi turns on it will load the data into memory and 
then process that data. Before shutdown, it will save any data it needs to, to its SD card 
so that it can load it on startup. 
  

5.3.6. Network Packet Types 
To transmit and understand information effectively, the system will utilize opcodes to 
know which action to take on different packets. The different packets are defined in the 
table below. The major packet types are “Fire Packets” and “Join Request” packets. Fire 
Packets contain information for the root node of whether there is a fire and at which 
location that fire may reside. This packet is forwarded to the root by other nodes in the 
mesh, however whenever a node attempts to forward a valid Fire Packet, it also will wake 
up the sensors and see if a fire is in its local area. Join Request packets are for nodes in 
the local area.  
 
Any node that hears a join request will respond and let the joining node know that it can 
hear it and that it is ready to receive messages. The other packets contain information to 
or from the root node that may be pertinent. Heartbeat Message packets are periodically 
sent out by nodes that are only read by nodes in the area. The heartbeat can receive an 
acknowledgement so that the sender knows it is still in the network and can decide which 
nodes are ideal to send to. If multiple heartbeats are sent out without responses, then the 
sending node may have low confidence that the nodes in its internal connection list are 
still connected. “Node Messages” Can be sent from the root or another node and may 
contain control data such as a “I’ve heard your message” response or 
acknowledgements. 
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Table 11: Packet Types 

Opcode Name Purpose 

0xA1 Fire Packet Alert that a fire has been detected. May 
contain data to describe the sensor 
readings. 

0xB1 Generic Root 
Message 

Generic message for the root node that 
may contain ASCII text as a payload. 

0xB2 Binary Root 
Message 

Message for the root node that contains 
binary data as a payload. 

0xC1 Heartbeat Message Packet contains nothing. This is meant to 
show that the node is alive. 

0xC2 Join Request Request to join the network. Allows the 
node to send and receive data from the 
network. Contains a randomly generated 
UID and possibly other data. 

0xD1 Debug Message Could contain anything. Software Defined. 

0xE1 Node Message Message to a node instead of to the root 
node. Follows the same structure as 0xB1 
(Generic Message). 

 
 

5.4. Machine Learning 
 
Machine learning will be used to implement computer vision for our system to detect fire 
in forests. Machine learning is a topical subject that has appeared in recent years. In our 
project, it is useful to classify images as “fire” or “not fire”. This classification and 
identification of different features of fire makes our design case a decent candidate for 
machine learning. By implementing and training a machine learning algorithm correctly, 
the system should be able to identify, with confidence, a fire rather quickly. This section 
will discuss the different kinds of methods to implement machine learning. 
 
Although there are many available resources and libraries for computer vision to detect 
fires, they are not accommodated to the processing power of Raspberry Pi. GPU is often 
used to implement these functions specially to train the model to a certain dataset as it 
can be very large and may take large amount of processing. 
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Our main task will be focusing on how to tackle the issues due to utilizing Raspberry Pi 
such as slower processing, memory limit, and power consumption while being able to 
output good performance fast enough.  
 

5.4.1. Methods 
 
This section will cover different methods/models we considered to use for detecting fire 
using our system. These will cover different filters and adjustments we can do to the 
images to help the system learn and identify the fire in an image or sequence of images. 
There are multiple ways to help the system identify the fire. It could be using deep learning 
through available pre-trained models or having functions such as optical flow or color 
classification to help identify the area of the fire.  
 
Our system will be able to ignore the background and its noises and identify the fire that 
is within an image or a sequence of images with minimal processing power via Raspberry 
Pi through these methods/models. 
 

5.4.1.1. Generic Object Detectors 
 
There are several accessible neural networks such as YOLO and Faster RCNN via 
GitHub. We were also able to discover other neural network that focuses on detecting fire 
instead of having functions such as object classifier. We need to identify which of these 
models and neural networks will provide out system the best performance possible within 
the limited time frame using Raspberry Pi. This subsection covers the comparison 
between them.  
 

5.4.1.1.1. YOLOv3 
 
YOLO (You Only Look Once) is one of the popular object detection methods. In fact, it is 
a state-of-art, real-time object detection system. It is a fully convolutional neural network 
(FCN) and has no pooling used (Redmon, YOLO: Real-Time Object Detection, 2018). By 
having no pooling, it avoids loss of minor features. It has great speed and accuracy 
compared to other state-of-art methods as seen in the figure 51 below which is the reason 
behind its popularity. For these reasons, YOLO is one of the top methods that come into 
our minds to implement in our system (Redmon, YOLO: Real-Time Object Detection, 
2018). Thanks to its popularity, there are many tutorials as well as resources and forums 
available for this model which can help us understand and use it better.  
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Figure  51: Comparison of other state-of-art models on the COCO dataset (Redmon, YOLO: Real-Time Object 

Detection, 2018) 

YOLO predicts and outputs feature map that has box coordinates, object score, and class 
scores as shown in the figure below. This means that it can classify and detect object at 
the same time. Since YOLO is a fully convolutional network, it can adapt to different sizes 
of images. However, it is recommended to have a constant input size to avoid adding 
complexity and issues during implementation. Since its accuracy and speed is applicable 
for real-time detection, this model is one of our top choices to implement. The reason 
behind the speed of YOLO compared to Faster RCNN is its use of confidence score to 
eliminate many of the predicted bounding boxes per object.  
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Figure  52: YOLO Bounding Boxes (Kathuria, 2018) 

For an image of size 416x416, YOLO predicts 10647 bounding boxes. To reduce these 
boxes in order to detect a dog in the picture as shown in the figure above, it uses 
thresholding by object confidence score and non-maximum suppression as shown in the 
figure above.  
 
YOLO offers great information such as bounding boxes for the detection of objects. It 
even classifies the detected objects from one another. However, most of these features 
may not be needed for the purpose of our system. Our system focuses on binary 
classification of whether the flame exists in the image or not. If time allows, we would like 
to scale it to be able to differentiate the forest fires from other flames such as campfire. 
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But if the other methods without these features still perform less than YOLO, then we will 
continue to use YOLO for our system. These extra features may also lead to better 
scalability for the computer vision of our system by adding more information to our system.   
 
There are multiple versions of YOLO available. The latest one would be YOLOv3. 
However, one suitable for usage with Raspberry Pi would be TinyYOLO which is YOLO 
adjusted for embedded systems such as Raspberry Pi. This should still be fast enough to 
identify and detect objects. We only desire this model to detect fire, so the full capability 
of YOLOv3 is not really what we seek for our project. Since we do not expect the model 
to identify and classify in detail, the lower accuracy of TinyYOLO should pose no issue as 
long as it can detect fire. Furthermore, since our project focuses on the detection of fires 
in the forest, we are expecting these models to easily distinguish the background from 
the fire and detect it as it will have drastic differences such as colors or shape. 
 
Some of the concerns when using YOLO is that the available pre-trained model is trained 
with a dataset that contains big distinguishable objects within an image. This may cause 
the model to miss some of the minor fires. This is a drawback we are considering 
accepting, since the fire should eventually be large enough for the model to detect and 
not large enough for it to be too late. In addition, the pre-trained model may not be able 
to detect the fire since it is not trained with any fire object beforehand. This means we 
may need to find an alternate object that is similar to fire that the model detects or find a 
different model that is trained with a dataset containing fire. The accuracy of the pre-
trained model can be obtained by running it with a dataset containing fire. Another option 
is to train the model ourselves, but it will be time consuming as we need to create our 
own dataset and train the model using CPU.  
 

5.4.1.1.2. Faster RCNN 
 
Faster RCNN is another state-of-art object detection method. It is easy to implement from 
scratch, and many resources are also available online. It can detect much smaller objects 
compared to YOLOv3. This is due to it having nine anchors in a single grid while YOLOv3 
contains two anchors. This aspect of the Faster RCNN is more desirable to us than what 
YOLOv3 offers as fires can be subtle and small. However, the Faster RCNN is much 
slower and may not be ideal for real-time detection. We need to test the speed of faster 
RCNN with our hardware to properly conclude that this is not optimal or better than the 
other models we searched. Due to the already proven time consumption and processing 
time compared to others, this is the least expected model to be implemented to our 
system. 
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Figure  53: The structure of Faster RCNN (Ren, He, Girshick, & Sun, 2016) 

Faster RCNN has a similar structure to YOLO where it has regional proposals or bounding 
boxes for objects. The main difference between them would be that Faster RCNN is not 
trained to do classification and bounding box regression at the same time. This makes 
the Faster RCNN much slower than YOLO. Unlike YOLO, it does not effectively eliminate 
the predicted bounding boxes which results in much larger computation than what YOLO 
can do. 
 
Although Faster RCNN is used widely, there is not much documentation of it being used 
with the Raspberry Pi. This is most likely due to the fact that it is not suitable for real-time 
detection and its speed. Not to mention YOLO is also available and is a much optimal 
model for most cases.  
 
We will attempt to implement Faster RCNN to the Raspberry Pi if possible, but if it deems 
to be too time consuming due to troubleshooting and adjustments, then we are highly 
considering to focus on other methods such as YOLO. We still included this model as one 
of our options since it is a state-of-art and known to detect smaller subtle objects better 
than YOLO.  
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5.4.1.1.3. MobileNetV2 
 
The other models mentioned are well known and are expected to return good results after 
implementation. However, as mentioned earlier, the main concern lies in whether our 
embedded system can handle all the computations and processing fast enough to detect 
the fire. Thus, we started looking into other models that are commonly used in a similar 
set up as our system.  
 
One of the models we found that is commonly used with Raspberry Pi is MobileNet. This 
is another model that is accessible and most optimal for our hardware, Raspberry Pi Zero. 
MobileNets are low-latency, low-power models for mobile applications to perform object 
detection, classification, and segmentations. There are MobileNetV2 and MobileNetV3 
available through GitHub (Sandler, 2019). These can also be used for real-time object 
detection and can be easily implemented by Raspberry Pis. Many examples are available 
online. 

 

Figure  54: Comparison between MobileNetV2 and MobileNetV3 (Howard, et al., 2019) 

As seen in the figure above, MobileNetV3 has better accuracy compared to MobileNetV2.  
However, since the MobileNetV3 is new, MobileNetV2 is preferable to use when it comes 
to training the models ourselves. There are details that could be found about the 
hyperparameters of MobileNetV2 in the GitHub and not of MobileNetV3. For this reason, 
we prefer to use MobileNetV2. 
 
This model should be able to work well with our system, but we are not sure how better 
or worse it performs compared to TinyYOLO or Faster RCNN. This is something that we 
can find out only through testing and repetition. We hope to be able to implement these 
models and provide a comparison between them to determine most optimal model for our 
system.  
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5.4.1.2. Frame Differencing 
 
One of the methods we can add to our models is frame differencing. It is an easy 

adjustment but may prove effective in identifying small objects between frames. Frame 

differencing is where we simply take a difference of values between the two images to 

see where the movement is significant. This is a way of capturing the temporal information 

between the images. Since flames will flicker and spread, it should have much more 

movements compared to the background. Thus, we expect the frame differencing to be 

effective in identifying the flame. Other concerns we had was distinguishing the flames 

from other movements such as leaves swaying or movements of animals in the forest. 

These can be solved by frame differencing by eliminating background noises and noticing 

a big difference is an animal is detected. Then, applying additional filters such as blurring, 

or normalizing will help the model detect the fire from those subtracted images.  

 

An example of frame differencing can be seen in the figure below. The white values 
indicate high differences or movements between the frames. In the example, it is 
noticeable that the movement was significantly recorded for the human and the flame. 
We may use this information to further ease the computations and determine the flame 
or area of it at an early stage. 
 

 

Figure  55: Frame Differencing (True) 

There are other researches done on computer vision with fire detection using frame 
differencing. The method by the Ministry of Public Security of Shenyang Fire Research 
Institute shows how the smoke is also being detected via frame differencing as seen in 
the figure below. This is an interesting concept as we initially disregarded the idea of 
smoke being detected in our system. However, it is one of great indicators of forest fires 
and we are expecting to be able to identify smoke in our system to warn or notice fire in 
great distance beyond what the camera can capture. By being able to distinguish fire from 
smoke, it can add better scalability to our project as smoke may provide additional 
information along with the other information. We may be able to estimate distance of the 
fire or its intensity by understanding and learning how these smokes are detected in our 
system.  
 
An example of frame differencing from the Ministry of Public Security of Shenyang Fire 
Research Institute is shown in the figure below. It shows both cases where the smoke is 
detected, and the flame is also detected by itself through the help of frame differencing.  
As seen in the figure, the smoke can be large and seem to be easily recognizable. This 
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may mean that the smoke detection may possibly be added to our system. Furthermore, 
these examples show how effectively can frame differencing isolate our desired subjects 
of fire and smoke in order to alert our system. This is because the fire and smoke have 
distinct movements compared to the other movements in the background. They also have 
patterns that can be recognized using frame differencing which also helps distinguishing 
them.  

 

 

Figure  56: Frame differencing continued  (Yu, Mei, & Zhang, 2013) 

 

Frame differencing can greatly help in distinguishing the background from the flame and 
smoke by capturing the flickering movements as seen in the previous examples. Being 
able to detect smoke is an additional feature that may significantly improve our system’s 
effectiveness and utility. For instance, even if we miss to detect the small flame, the 
smoke can trigger the system earlier rather than waiting for the flame to be large enough 
to be recognizable. Adding this feature to our model should increase accuracy and 
effectiveness. Not only that, it also adds better scalability and utility for our system.  
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5.4.1.3.  Color Classification 
 
Another method that may help us greatly in distinguishing the fire from the background is 
color classification. Color classification is a method to classify area of an image by its 
color values. It can distinguish different color values, hues, and saturation. It is a simple 
yet effective method to add into our system. Since our focus is forest fires, the fires should 
have significantly different color from the other objects in the background including 
possible other subjects like animals crossing by. Thus, we expect our system to be able 
to provide better results by applying color classification as part of its identification process. 
Adding color classification should further help in narrowing the computation time as well 
as increase accuracy by providing better predictions of where the fire may be.  
 
Compared to frame differencing, color classification may run into more ambiguous 
detections, since forest may still have objects with similar color to the flame such as red 
flowers, woods, and leaves. To avoid confusion between different objects, we plan to 
focus on specific unique color that is most applicable to flames to increase accuracy. 
However, choosing a specific value of color to detect fire as a threshold may become 
tricky as it may increase false alarm rate or decrease predictions too much and lower the 
accuracy overall with slight changes in the value.  
 
But the application of color classification to our system should be much easier compared 
to frame differencing. We could apply OpenCV’s color classification or dissect our images 
into the RGB layers and focus on the R layer alone to help the model detect the fire. 
OpenCV is a reliable library that provides color classification and shape detector. It also 
has a package for Raspberry Pi. The figure below shows an example of color 
classification and shape detector using OpenCV libraries alone. It computes the center of 
the contour, perform shape detection and identification, and color labeling by taking 
averages of a particular image region. However, the example is performed with small 
complexity and we still need to perform this function to our own dataset or examples to 
determine how much color classification of OpenCV is effective with our system and goal 
of detecting fire. If it is not performing as well as we desire, we can create our own color 
classifier by analyzing the L*a*b* color space or RGB and HSV layers. We are also aware 
that the L*a*b* color space is better than RGB or HSV space as it has actual perceptual 
meaning. But since we are focusing on forest fires. Looking at RGB and focusing on red 
intensity may also work, possible better, for our system. We can also consider the 
brightness and redness of an object as well.  



81 
 

 

 
Figure  57: Color Classification using OpenCV (OpenCV, 2020) 

There are other researches that also implemented color classification in order to detect 
fire. Figure 57 is an example of a research that utilized the color classification in order to 
detect the fire. As you can see in the example, flame is within the predicted area using 
the color classification. However, other objects such as wood or person are also detected 
as false positives. In the research, they were able to minimize these false positives by 
adding motion along with the color classification to narrow the predictions down.  
 
Color classification may greatly be enhanced by adding other methods such as frame 
differencing to minimize false positives by isolating objects that have motion and desired 
color value. By doing so, leaves, trees, and structures may easily be distinguished from 
the fire as it will not have as much of flickering movements as the flames will have. By 
eliminating most of it, it should significantly help our system to learn or identify the flames 
from others.  
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(a)                                                                            (b) 

 

(c) 

Figure  58: Color of Fire Classification (True) 

(a) original image (b) red denotes pixels that were classified as being the color of fire (c) color classification with motion 

Since we are aiming to detect fire in a forest setting, these flames will be very 
distinguishable compared to the other in terms of colors most of the times. Adjusting 
different setting such as saturation and filters may also help in identifying the fire and 
distinguish it from the rest of the background. We expect that combining color 
classification along with motion detection (I.e. frame differencing) will help our model 
increase its accuracy further. 
 
We will start with a dataset or sample sets with no or least number of ambiguous objects 
that may interfere with the identification of a flame. This is to test the effectiveness of color 
classification and possibly along with motion detection either by frame differencing or 
optical flow. Then, we will further test it with more ambiguous objects to validate the 
accuracy and effectiveness of our system using color classification.  
 
Color classification should be one of the optimal methods we can add to our system 
because it does not require heavy computations and libraries are available to easily code 
the method into our Raspberry Pi. We hope to see significant improvement by adding this 



83 
 

method on top of our machine learning models and possibly additional method to detect 
motion. 
 

5.4.1.4. Optical Flow 
 
Another method to detect motion is using optical flow. This method can be implemented 
using OpenCV [12]. Optical flow shows the vector or density of an object’s movement 
between two consecutive frames. The dense optical flow in OpenCV uses Gunner 
Farneback’s algorithm. In this method, the direction corresponds to hue value while the 
magnitude corresponds to the value plane. An example output can be seen in the figure 
below. 

 
Figure  59: Dense Optical Flow (OpenCV, 2020) 

Top image in the figure 59 is the original image while the bottom image shows the result 
of dense optical flow via OpenCV. Optical flow is another method we consider 
implementing as the other motion detector like frame differencing. Optical flow adds a bit 
more complication than the frame differencing, but the available OpenCV library help us 
implement this method with ease much like color classification. Which is one of the 
reasons why we chose to add optical flow into our system.  
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By taking in consideration that the flames flicker in concentrated area and may spread 
slowly, optical flow can best illustrate this dense movement in the sequence of images 
and identify flame. This should be an easier implementation than frame differencing as 
we would not need to add and experiment our own filters and thresholding for frame 
differencing to work.  
 
Optical flow also helps us distinguish other movements such as animals moving by 
comparing the density and the vector of the movement. OpenCV optical flow seems to be 
able to ignore the background noises which can help in not having leaves or trees as false 
positives. Thus, this method is very effective in detection motion while identifying its 
density and vector. Compared to color classification and frame differencing, this seems 
more promising and easier to apply while capturing enough motion to detect the fire.  
 
We can also use it to pre-determine whether there is a fire before sending it to the CNN. 
We can provide threshold for the density of movement to determine if there is a possible 
flame. The additional information of density and vectors may also help us have better 
scalability in our system by providing additional information. This will help in having more 
data and ways to inform our users about the situation of the forest better. We may be able 
to detect other movements and information in addition to the sensor information we have.  
 

5.4.1.5. Superpixel Localization  
 
Another method we found interesting and effective to apply to our system is superpixel 
localization. Instead of looking at the whole image, pixel by pixel, or by looking at bounding 
boxes, we localize objects by segmenting the image into perceptually meaningful regions 
similar in texture and color.  
 
A research from Durham University (Dunnings & Breckon) shows how they were able to 
effectively detect fire using superpixel localization and a network architecture with 
reduced complexity. By using superpixel, they were able to increase accuracy without 
adding complexity to the network architecture and with no temporal information. Their 
research shows that using superpixel significantly outperformed other works in the non-
temporal fire detection.  

 
Figure  60: Superpixel Localization from Durham University (Dunnings & Breckon) 
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This method is also available in GitHub created by Toby Breckon (Deshmukh, Breckon, 
& Dunnings, 2019). He uses FireNet and InceptionV1-OnFireNet architecture shown in 
the figures below along with the superpixel localization explained in the research. These 
netowrks have binary detection architectures that determine whether an image frame 
contains fire globally. However, by adding superpixel localization, it breaks down the 
frame into segments and performs classification on each superpixel segment to provide 
in-frame localization. The superpixel localization uses SLIC algorithm. For the best 
performance and throughtput, use the FireNet model.  

 
Figure  61: FireNet Architecture (Deshmukh, Breckon, & Dunnings, 2019) 

If slightly lower false alarm rate is desired despite having lower throughtput, then use the 
InceptionV1-OnFire model shown in the figure below. 

 
Figure  62: InceptionV1-OnFireNet Architecture (Deshmukh, Breckon, & Dunnings, 2019) 

 

An example output is shown in the figure below. As seen in the figrue, it was able to 
successfully identify the fire in the given image by selecting the correct superpixel regions 
associated to the fire.  
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Figure  63: : Implementation of Superpixel Localization with CNN (Deshmukh, Breckon, & Dunnings, 2019) 

Left Image: Original image, Middle Image: Superpixel Localization, Right Image: Predicted Fire Regions (Green) 

These models are available in pre-trained form using the dataset found in the Durham 
Collections. Both models were able to achieve over 90% accuracy using that dataset 
according to the Durham University’s research paper.  
Thus, we believe that using superpixel localization may also help us improve our system. 
We expect that this will provide much better results rather than using OpenCV shape 
detector to identify the flame. 
One of the other ways to utilize superpixel into our system is to use OpenCV just like color 
classification. OpenCV provides three different algorithms we can choose from to perform 
superpixel. They are SLIC, SLICO, and MSLIC as shown in the figure below. (OpenCV, 
2020) 

 
Figure  64: Superpixel Localization using OpenCV (OpenCV, 2020) 

 

We thought that the superpixel localization was an interesting way to tackle our goal of 
fire detection in forests without temporal information. We hope that by adding this method, 
we will be able to lessen the computation needed from the networks while keeping the 
accuracy high.  
 

5.4.1.6. Original CNN (Convolutional Neural Network) Design 
 
There are other available models out there but not much that are publicly available for us 
to implement especially with our embedded system. To solve this problem, we can create 
our own CNN architecture and train it to have the most optimal outcome out of all the 
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CNN we mentioned. However, this means finding a novel way in such short amount of 
time with limited resources such as accessible GPU and datasets. This route seems very 
impractical for our project considering there are already readily available CNN that may 
fit fine with our goals.  
 
Combining all these methods’ advantages, we may be able to create something novel 
and much more effective system than what is out there. For example, combining faster 
RCNN and YOLO may result in better model. Utilizing color classification and frame 
differencing will also help in creating better accuracy for the model [10]. Or optical flow 
with one of the generic object detectors may work fine as well. Another design we may 
add to our model is changing its hyperparameters to optimize for detecting fires. 
Reduction of latency is also possible by eliminating unnecessary features that come with 
the pre-trained models and libraries such as classification and segmentation.  
 
However, due to time constraint, we will most likely avoid creating our own model as it 
will take time to design, program, train, and test the model. Tweaking the 
hyperparameters alone would be tedious and take tremendous amount of time to find the 
best values for the models to perform. In addition, it does not provide much scalability 
and promising improvement. 
Another option to ease the heavy computation usually brought from the models we will 
test, we can create a much simpler CNN architecture concentrating on binary 
classification and just identifying whether the fire exists or not. We can improve this model 
by adding the other methods mentioned such as color classification or motion detector to 
eliminate false positives in the early stage.  
 
In considering making new CNN architecture, we have to keep in mind the time constraint 
we have as well as processing limit of our embedded system. Further tests will be 
necessary to determine if this route will be in further consideration to utilize in our system. 
 

5.4.2. Neural Network Frameworks 
 
Different frameworks exist to help with the implementation for neural networks. When 
designing software around a neural network framework, it is important to discover the 
differences in each framework. The strengths and weaknesses of each framework will 
determine which framework is used for the project and how well it performs. We will also 
take in consideration of which framework will be most optimal for the capacity of our 
embedded system.  
 

5.4.2.1. Keras 
 
Keras is a high-level neural networks API, written in python. (Keras, n.d.) It allows easy 
prototyping of a model and runs on both CPU and GPU. It is easy to use and beginner-
friendly, but it does not allow many modifications to the model like Pytorch does. There 
are simple examples available online to test and create your own neural network 
architecture quickly. There are some models such as Faster RCNN that are coded using 
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Keras. Keras can also accommodate to raspberry pi which makes Keras one of our top 
frameworks to utilize.  
 

5.4.2.2. PyTorch 
 
PyTorch is an open source machine learning framework that excels in researching 
prototyping and production. (PyTorch, n.d.) Pytorch is known to be harder to implement 
than Keras, but it provides more flexibility and features. Most of the models available 
publicly are coded using PyTorch as it is one of the top used frameworks when it comes 
to machine learning researches as it offers fast and dynamic training.  
Many industries also look for proficiency in this framework as they also use this as their 
main framework. Understanding and being able to use PyTorch should be useful for us 
in long term and a good skill to have. Knowing how to use this framework should indicate 
that we have good understanding of machine learning.  
 

5.4.2.3. TensorFlow/TensorFlow Lite 
 
TensorFlow Lite is an open source deep learning framework for on-device inference. 
(Abadi, et al., 2015) It is commonly used with the Raspberry Pi Zero. To implement deep 
learning, we would need to install this to our MCU. Most of the tutorials we encountered 
use this framework especially for Raspberry Pi. It is also most optimal for integrating AI 
into a product. TensorFlow is also another well known framework similar to PyTorch that 
many industries utilize. It is also beneficial for us to properly understand and know 
TensorFlow just as much as PyTorch.  
 

5.4.2.4. OpenCV 
 
OpenCV is not a framework, but an open source computer vision library (OpenCV, 2020) 
that has many computer vision applications that supports the mentioned frameworks such 
as PyTorch or TensorFlow. OpenCV is the best choice among the others we mentioned 
when utilizing CPU. This is because it has many libraries and models that are optimized 
for CPU use. The models mentioned earlier can be implemented using OpenCV using 
their pre-trained models. OpenCV has many libraries available for us to use and is popular 
enough to have many resources to help us guide through the process. We would like to 
first implement these pre-trained models available in OpenCV to test with Raspberry Pi 
Zero and determine if we need to make improvements for the models. 
 

5.4.3. Settings for Machine Learning 
There are different options available in the setting up machine learning for our system. 
For instance, the programming language we would like to learn and use, or the embedded 
systems we have to choose from different types of Raspberry Pi. This subsection will 
cover what we aim to use and the reasoning behind them.  

5.4.3.1. Programing Languages 
 
Most of the available models are in the Python, if not in C++. We will most likely conduct 
our codes in Python, but we are also considering learning C++ when using OpenCV or 
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Pytorch. The reason we chose Python as primary is for the ease of use and because it is 
widely used in computer vision applications. Thus, making tutorials and resources much 
easier to acquire in Python compared to C++. The reason why we chose to consider C++ 
and would like to code using it is due to its demand in industries. Many industries and 
positions require or prefer applicants with decent proficiencies in programming C++ as it 
has become one of the standard languages to be used within software engineers. 
However, due to the time restriction and ease of use, we will primarily use Python for 
machine learning.  
 

5.4.3.2. Hardware 
 
We chose Raspberry Pi Zero to implement computer vision in our system. It has low cost 
while providing decent amount of memory and speed for our system. Another system we 
were considering was Raspberry Pi3. It was widely used and had several tutorials 
available online to implement computer vision. However, it had much higher cost 
compared to raspberry Zero. Furthermore, our system does not require the output to be 
instantaneous. Our priority for our system’s goal is for it to be able to detect fire fast 
enough to relay the message to other systems. Thus, we decided that the Raspberry Pi 
Zero should sufficiently perform and meet our goals while saving us significant cost.  
 

5.4.4. Dataset 
 
For our model to have a good performance, it is optimal for us to train our models instead 
of utilizing the pre-trained models available online. However, this requires us to create 
our own dataset to train and test our models. Usually, a dataset would contain thousands 
of images for the model to learn from. But due to time constraint and efficiency, we are 
aiming to have about 400 images with the fire and 400 without a fire. We plan to combine 
the images we took ourselves and images online to create this dataset. We may increase 
the number of images if the model does not perform any better with other possible 
adjustments such as its hyperparameters. 
We can also find one of the datasets we found when looking for researches for fire 
detection using computer vision which can be found on Durham Collections. It has a focus 
on flames which would be ideal for our use.  
 
However, we will prioritize implementing and improving the pre-trained models if it has 
enough accuracy and results. With different methods and models, we may need to adjust 
the dataset as well to include different types of fire. We may even need to add smoke as 
part of our dataset to see if it can successfully detect and distinguish the fire and smoke 
to alert regarding the forest fire. We may also add different subjects such as animals or 
passerby to test how the system would distinguish them from fire and if it can detect the 
fire with increased distractions. It is also important to keep in mind that the system may 
be confused with objects that has similar colors as the fire such as leaves, woods, or 
structures. It will be better if we could also include these types of sets and test it to our 
system to see how it would effectively detect forest fire.  
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If we are creating a dataset, it would have different categories such as by noises (i.e. 
similar colors, more obstructions), distances, or amount of flames (possibly including fire). 
These can be expanded as we see how much our system can grow or may need to grow. 
Our base would still be a dataset with fire and simple background with minimum noise to 
test our system properly.  
 

5.4.5. Summary of Machine Learning 
 
Through looking at multiple existing researches regarding utilizing computer vision in fire 
detection, we can safely assume that we can create and implement computer vision in 
our system to detect fire in the forests. There will be many issues we have to tackle such 
as processing limitation and memory capacity issue from our chosen embedded system, 
and necessary adjustments to make our computer vision appropriate for forest 
application. We will most likely need to improve existing models by re-training them or 
adding other methods such as color classification, frame differencing, optical flow, or 
superpixel localization to it.  
 
To ensure we succeed in implementing computer vision into our system, we would like to 
have a basic computer vision built using pre-trained models and open source libraries 
such as OpenCV to know how they are effective in detecting fires. This is also to test how 
fast Raspberry Pi Zero works with our setup. Then, we may use state machine for color 
classification, frame differencing, or optical flow to have a threshold and detect fires. 
Optical flow is our top method as it provides density of movement and direction to help 
us distinguish the flames from other movements. If this is successful, we can add those 
to our model. For instance, if one of the methods returns high threshold, then it should 
send the image to the model. If the model also concludes that there is a high threshold of 
a flame being detected, then fire should be detected and alert the other systems. This 
should improve the accuracy of detecting fire compared to using the available object 
detectors alone.  
 
Our top choice for the pre-trained models would be the one with super pixel localization 
as it is specifically trained with a dataset of fires in order to detect the fires. The main 
issue we need to tackle when implementing this model is if we can make it work with the 
Raspberry Pi Zero.  
 
If time allows, we can create our own dataset and train the models using the images 
through the methods (color classification, frame differencing, or optical flow). This will 
allow our model to learn from a different perspective and be able to ignore the 
unnecessary information (I.e. background). We expect that our model should then return 
better accuracy. Further improvement can be done by adjusting the architecture or the 
hyperparameters of the CNN. This is very experimental and needs time, but if successful, 
we will have a novel way to detect fires in the forest.by adding superpixel localization, we 
may create our own network without much complexity as the super pixel localization 
works very well with such architecture.  
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6. Testing and Prototyping 
 

Testing our hardware and software is almost as important as the project itself. To ensure 
that everything is going to plan, we will make sure to test each component and subsystem 
separately first and move on to more integrated testing as time goes on. This will, ideally, 
cause our full prototype to be as functional as possible since all the bugs are worked out 
on a smaller scale before integration. The first section below deals with the advancement 
of our knowledge and experience with the subsystems to prepare for a final design. The 
sections after deal with testing a semi-final and final design. 
 

6.1. From Nothing to Something 
 
All projects must begin from somewhere. There are a few subsystems that must work 
together to complete the project: Power, Sensors, Network, Processing. This section 
deals with the process of prototyping in preparation for a final design. 
 

6.1.1. Power Subsystem 
 
Nothing in the system will function without the Power Subsystem. The power subsystem 
utilizes 3 different technologies to allow the full system to work. The first system that 
needs to be designed is the power regulation. We have identified through research that 
we will be using switching buck regulators for their efficiency. Energy lost to heat would 
not be ideal in a battery system. The designs for the switching buck regulators will be built 
onto a breadboard to prove they work, and a variety of expected voltages will be applied 
to the input to ensure that it can give us the required output voltage. From this point some 
calculations will be done to determine their efficiency and, using different loads, we will 
attempt to prove that the required power can be supplied by the regulator. 
 
After the regulator design is investigated, it is important to work on the battery design. We 
simply need to prove that we can charge and discharge batteries. Our batteries and 
battery charging circuit will be put together on a breadboard and we will attempt to charge 
and discharge the batteries. Safety must be observed as the batteries are an energy 
storage device. This proof of concept will prove that we can charge batteries and use 
them. A few charge and discharge cycles will be observed to prove that the battery will 
not deteriorate quickly over the course of only a few discharges. 
 
In the end, the system is meant to be powered from a solar panel. A solar panel will be 
used to generate some power from either the sun or a bright light. Use of the solar panel 
will be investigated so we can become familiar with the characteristics of the device and 
how it will affect our circuit. In the end, all three parts of this subsystem will be combined 
with a simulated load such that we can see if the power system can support everything. 
After testing this system a layout can be put together to put this system on a PCB and the 
design for the mechanical support structure for the solar panels can be finished. 
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6.1.2. Sensor Subsystem 
 
Testing the Sensor Subsystem will take place in two parts: retrieving sensor data reliably 
and retrieving accurate data. To facilitate these tests, a Raspberry Pi will be used so that 
the team can become familiar with the Raspberry Pi’s interface and operating system. 
The goal of the first portion of testing is to investigate the ease of use of the sensors. A 
sensor will be hooked up, on a breadboard, to power and all the supporting hardware will 
be given to the device. Then, a Raspberry Pi will attempt to retrieve data from the device 
through SPI or I2C. At first the result’s values will not matter; just that results exist. All of 
the sensors will be tested this way until each sensor has been used enough to determine 
its difficulty in using it. It is at this point that a sensor may be deemed too complex or 
difficult to use and we may decide to use different sensors. This step is important to 
determine what sensors will be used in the final product. 
 
Finally, the sensors will be checked for accuracy. This may be determined with sensors 
that we know are accurate (such as a carbon dioxide detector for gas) and our sensors 
and see how close the values agree. For something like a smoke detector, we check to 
see if the smoke detector can actually detect smoke (or something equivalent). We must 
reach some level of accuracy with our sensors or else the system will not detect fires with 
accuracy either. Lastly, if we have a camera, we will take some pictures and save them. 
If the sensors’ data is not accurate enough or the pictures are not clear enough, then we 
may have to investigate other options for different sensors and/or cameras. After testing 
this system, a layout can be put together to put this system on a PCB and the design for 
mounting the sensors and where everything must go can be completed. 
 

6.1.3. Network Subsystem 
 
Testing the Network Subsystem will consist of a few parts to ensure that the Network 
software and hardware works all together. The first step will be programing some 
development kits that use the SAMR34 as the processor. The development kit is the 
SAMR34 Xplained Pro Evaluation Kit. The SAMR34 has a built in Semtech SX1276 LoRa 
transceiver which will allow us to get a feel for the software and hardware requirements 
since we plan to use the SAMR35 microcontroller. Using two of these evaluation kits, 
software is written to send text to a screen when a button is pushed. This is important as 
serial communication is planned to be the method of communication between the Network 
Subsystem and the Processing subsystem. From there a program will be written to allow 
a button push to turn on the built-in user LED on the other device. Ideally, the LoRa 
protocol is used to complete this. This proof of concept step is important as it lays the 
foundation to sending data over the LoRa based network. The final piece of testing that 
will og into the development of the system is to have user input. The user will type a string 
into a terminal that serially sends the data to the network controller. The network controller 
will send this string to the other device and the other device will print this data to another 
terminal. After this test, the software is ready to be developed for the mesh network 
protocol since data can be transferred between the two evaluation kits. The evaluation 
kits will be used to develop the software until the time functioning PCBs for the final 
system are available for testing. 
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The next part of testing for the Network Subsystem is the internal timers and GPIO pins. 
On a breadboard, the Network Subsystem will connect to a button, two LEDs, and a serial 
terminal. Using the button, the network subsystem will turn on an LED and send data to 
the terminal. This is to simulate the user’s input on the final system. The other LED will 
blink based on a timer interrupt within the network controller. This will be used to simulate 
the interrupt for turning on the Processing Subsystem. In the final system, a transistor or 
solid-state relay could be used to allow power to get to the Raspberry Pi. The last part of 
this testing will be to have data from the terminal saved to memory in the network 
controller. When a specific sequence of characters arrives (as in a command) the network 
controller will also turn on the LED and write a response to the terminal to simulate a 
packet arriving and the network controller taking action based on a specific field in the 
packet. This testing may or may not use LoRa to complete most of the tasks. After testing 
this system, a layout can be put together to put this system on a PCB that is similar to the 
evaluation kit so as to keep the RF characteristics consistent from testing. 
 

6.1.4. Processing Subsystem 
 
Testing the Processing Subsystem is important as this is the subsystem that determines 
if a fire is in the area. There are three parts to developing the Processing Subsystem. To 
test the Processing Subsystem, first, a Raspberry Pi must be set up with all the software 
necessary to preform machine learning algorithms and run Python code. From there, the 
Raspberry Pi runs through some sample images to test out the algorithms. The 
subsystem, moreover, needs to have the training data loaded. This may be previously 
collected data, our own training sets, or purely data retrieved from our sensors. The final 
result will likely be training data that is a mix between all three. From this point on, the 
machine learning parts of the subsystem will need to be fine-tuned to be able to detect a 
fire with a decent level of accuracy. This “fine tuning” process will probably continue 
throughout the project until it is complete. 
 
The second part of prototyping and testing the Processing Subsystem will be the 
interaction between the Processing Subsystem and the sensors. To go about testing this, 
the sensors will be introduced into the system one at a time and we will ensure that the 
connections between the raspberry pi and the sensors works appropriately. To verify this, 
we may use a logic analyzer to see the signals sent to and from the Raspberry Pi and the 
sensors. This testing is meant to focus on the software interaction between the Raspberry 
Pi and the sensors, not that the sensors work.  
 
This will have been tested in the sensor subsystem testing. Finally, the Raspberry Pi will 
need to be tested with the Network Subsystem. Ideally, this is not a complex system. The 
Raspberry Pi will attempt to send information to the Network Subsystem and vice versa. 
This kind of testing will not focus on the software interacting correctly as in the final 
system, although it could simulate it. The goal of this testing is to verify that we can send 
messages reliably between the two devices. After testing this system, a layout can be put 
together to put this system on a PCB with the mounting style for the Raspberry Pi as well 
as the power control circuitry for the system. Some testing may go into ways to limit power 
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to the Raspberry Pi since it cannot turn on from being shut down without the power fully 
turning off and then turning back on again. 
 

6.2. Step-by-Step Hardware Test Plan 
 
Without the hardware, the software cannot do its job. It is imperative that the hardware 
operates on a reliable base for the software to be built upon so that the prototype functions 
in all conditions: day, night, harsh weather, or perfect, clear skies. The following sections 
discuss some of the step-by-step plans for testing the hardware components and why it 
might be useful to do so. 
 

6.2.1. Power 
 
Stable power is the backbone to the entire circuit. Power is the only sure thing that a 
circuit must have working to perform its function. To test the power systems a step-by-
step plan is introduced. 

 
Step-by-step: 

a. Set up all power supplies to the expected nominal voltage from our solar panels 
and allow for as much current draw that is necessary 

b. Test all power converters and regulators separately and measure their outputs. 
Test them under the expected load of the system and make sure they perform. 

c. Modify the load and map their efficiency to ensure proper operation. 
d. Starve the converters and regulators of current and observe their effects on the 

simulated load. Make note of the minimum current the converters and regulators 
can maintain 

e. Repeat the above steps for lower than nominal voltages and higher than nominal 
voltages. Do not exceed the recommended highest voltage of each converter or 
regulator.  

f. Test different circuit protection techniques to help for overvoltage and overcurrent 
conditions. 

g. Set up the charging circuit for the batteries and give it nominal conditions for 
charging and observe the effects.  

h. Connect all the systems together, including power supply and load to get a fully 
working power system. 

i. Shift the power supply to a solar panel and test it with a bright light source and/or 
sunlight. 
 

6.2.2. Hardware Sensor Testing 
 
Sensors will require hardware testing and software development discussed later in the 
paper. Hardware testing of the sensor will include testing the physical capabilities of the 
sensor. Some sensors have digital output and can output different digital protocols like 
UART, I2C, or SPI. Others have analog and differential outputs which require and 
amplifier and some other supporting circuitry. This means that it must function correctly, 
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or the software cannot determine what values are correct and what isn’t. Therefore, a 
testing procedure must be put in place. 
Step-by-step: 

a. Power any sensors and see if they appear to function.  
b. Establish connection between raspberry pi and sensors through I2C 

communication to see if results can be read.  
a. Create a circuit for the sensors and see if they respond to any external stimuli: 

a. Gas sensors will be exposed to nearby smoke and fire to test detection of 
organic gases. 

b. NIR sensors will be exposed to nearby flames to detect infrared waves. 
c. Thermal camera will be exposed to nearby flames to record fire and non-

fire data as explained in section 6.3.2 Computer Vision.  
d. Smoke sensors will be exposed to nearby smoke to asses if the sensor 

alarm is triggered.  
c. Hardware testing will go through multiple trial and error runs with varying levels 

of gas, smoke, and flame exposure to not only obtain raw data but also to test 
the minimum and maximum capabilities of the sensor. Understanding the 
minimum and maximum capabilities will help determine the distance range 
between each device in the forest. 

d. If the sensor is analog, check to see if the output falls within an expected and 
acceptable range and ensure all the amplifier circuits are working correctly. 

e. If the sensor is digital, write software to only read the result and try to get 
meaningful data. Check to see if the output falls within an expected and 
acceptable range. 

f. Try to convert the sensor reading to meaningful “real world” values and ensure 
they are acceptable for real world scenarios (especially the current scenario the 
sensor is in).  

g. Provide the data to machine learning engineer to use for algorithm development. 
 

6.2.3. Controllers 
 
Testing the controllers is important since these pieces of hardware will control everything. 
Each system has its own set of requirements, however. 
 

6.2.3.1. Raspberry Pi 
 

The Raspberry Pi is a computer with a very small footprint. Since it runs a distribution of 
Linux, we should ensure that the Raspberry Pi can boot properly and can run software. 

 
The test procedure is step-by-step as follows: 

a. Boot into the Raspberry Pi operating system and interact with the terminal 
b. Write some software to toggle GPIO pins, maybe to turn on and off an LED 
c. Record power usage under idle and stressed conditions 
d. Output SPI, I2C, and/or UART with the Raspberry Pi. 
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e. Using one of the voltage regulators in the Power subsystem, power the raspberry 
pi from that instead of the normal USB power (using pins 2 or 4 on the header 
pins). Repeat the following steps to ensure everything is working. 

 

6.2.3.2. SAMR35 
 
The SAMR35 is a full-on embedded microcontroller. As such, it does not use an operating 
system (unless one is uploaded onto it). For hardware testing, a simple plan can be put 
in place to test the different possibly required peripherals and ensure the chip is working 
correctly. 

 
Step-by-step: 

a. Program the chip to toggle a GPIO pin, possibly turning on and off an LED. Use 
delays based on timer interrupts if possible 

b. Program the chip to output SPI, I2C, and/or UART 
c. Record power usage under idle and stressed conditions 
d. Using one of the voltage regulators in the Power subsystem, power the chip from 

that instead of a power supply 
e. If using a Real Time Operating System, schedule two jobs to run concurrently 

and see how they interact. Using an oscilloscope see the delay between the two 
jobs if running concurrently. 

f. Test RF capabilities if applicable/possible. 
 

6.2.4. Radio Frequencies 
 
Testing RF designs can be challenging. Testing this assumes that the SAMR35 has been 
tested and that some software has been written to interact with the LoRa peripherals. 

 
 
Step-by-step: 

a. Program the chip to send out data whether it be FSK or LoRa.  
b. Watch a spectrum analyzer to see if that data is being transmitted in the air and 

if it is being transmitted properly 
c. Take two devices and attempt simple communication, possibly light an LED on 

received data. Attempt to transmit larger packets as well like strings. Investigate 
streaming data. 

d. Range test: With a working simple communication test, do some tests in different 
environments with range. Some ideas include: Line-of-Sight, in or around 
buildings/urban environments, wooded/forest environments. See how the range 
is affected. Measure results every 100-200m and expand until range is 
compromised.  
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6.3. Step-by-Step Software Test Plan 
 
Software is an important and critical piece of the prototype and must be done correctly to 
determine if there is a fire. Thus, proper testing of the software is important. The following 
sections outline step-by-step plans to testing the software components and why it might 
be useful to do so. 
 

6.3.1. Connection Between the Hardware and Software 
 

The hardware and software must work together to have a working prototype. To make 
sure this is the case, simple software will be written to make the hardware do what we 
want or similar. This will allow us to see if the implementation and ideas we have are 
feasible or if they are just not quite what we need to do. These small, simple programs 
will allow us to see what is going on and later on expand their complexity into a full-scale 
prototype.  
 

6.3.2. Software Development for Sensors from Hardware Testing 
 
The sensors play an important role in the process of determining if there is a fire. 
Computer vision method is one option and will be discussed further in the paper; however, 
the other sensors can provide us with more confidence that there is, indeed, a fire. The 
sensors can be used to add more data and possibly, if done correctly, may be able to 
provide insight about the type of fire or what is burning. Sensor operation is depicted in 
the diagram of figure 64.   

 
Step-by-step: 

a. Write simple software to interact with the sensors and get raw data.  
b. Obtain the data from hardware sensor testing data and see if that data can be 

made useful by mapping it to “real world” value.  
c. Train the machine to establish fire and non-fire conditions by analyzing smoke, 

gas, and flame characteristics.  
d. Complete software that will read the sensors and determine the possibility of a 

fire condition. 
 

6.3.3. Computer Vision 
 
One way to detect and identify fire is using computer vision and machine learning. There 
is much research done in creating different neural network architectures and methods to 
best identify flames. These can be done with minimal to no temporal information which 
helps our system to avoid heavy computations.  
Without the processing subsystem: we can test the computer vision software using our 
webcam. We can run a real-time object detection using our computers and test to see 
how well it would detect different types of fires in forest especially the minor and small 
ones. Since there will be adjustments needed to accommodate to our processing 
subsystem, we will only test the pre-trained models and simple methods such as frame 
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differencing, color classification, or optical flow in real-time. By doing so, we can ensure 
that our code is properly constructed and should return proper results when transferred. 
By having simple tests for the models and methods, we can find the accuracy appropriate 
for detecting fire in the forest.  
 
To do so, we would need to perform simple test runs multiple times and document the 
results for each models and methods. These test runs will follow just like the general 
diagrams below. The model will receive an image and process it to output its result. Then, 
the accuracy will be calculated by comparing its output to the ground truth.  

 

 
Figure  65: General diagram for testing models such as YOLO and Faster RCNN 

 
Although the models may differ significantly from each other, the testing plan should be 
very similar to each other. For each model, there will be testing procedure we will follow 
which is illustrated in the diagram below.  

 
Figure  66: General software flow of the object detector through a model 



99 
 

After running a model, it should return an output (i.e. predictions feature map) containing 
information such as the location of bounding boxes of the objects, class score, and 
confidence score. Using the information, we will determine if there is a fire. Thresholding 
the confidence score and including an array of acceptable classes will most likely be 
needed to detect the fire properly. This is also another experimental situation where we 
will need multiple runs to determine the values and appropriate thresholding. We would 
also like to avoid constantly running the model unnecessarily, so we need to incorporate 
an ability for it to wait and turn on again when needed. It will also need to turn off after 
sending the results to other systems. We would also need to ensure that the model will 
work properly once it is turned on again. To test this using without the processing 
subsystem, we need to add a function to turn off after outputting prediction.  
In addition to the model, we will be adding another method such as color classification or 
optical flow to help our model determine if there is a fire. By having this extra step, we are 
hoping to achieve better accuracy while helping the system lighten its average processing 
time.  
 
Testing these methods will have similar construction to testing the models. We will run a 
method on a given image. Then, it should output its results. And from there we calculate 
the accuracy of the method by comparing it to the ground truth. We will test these methods 
individually, just like the models, and then compare the results to each other to see how 
effective each method is. Ultimately, we would like to also have a comparison of 
combinations of different methods to see how we can successfully construct these 
methods to produce best results.  

 

 
Figure  67: General diagram for testing methods such as color classification and optical flow 

 
We are planning to test three different methods which are frame differencing, color 
classification, optical flow, and super pixel localization. These tests should mostly follow 
simple steps as illustrated in the figure above.  
 
Since each method is unique, we would need to perform these tests slightly different from 
each other. Specifically, applying superpixel localization to other models may get tricky 
as we need to accommodate the models to read by meaningful segments instead of 
bounding boxes or per pixels. Thus, we may not test the superpixel by itself if time seems 
limited. However, there is already a model publicly available through GitHub that performs 
superpixel localization with a neural network which we can test similar to how we test 
other neural networks such as YOLO.  
One of the methods, frame differencing, can be done by subtracting the frames to obtain 
a new image. To test how this will help our system achieve better accuracy, we will need 
to perform frame differencing along with filters and additional methods to identify an object 
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through the difference image. Filters such as blurring and normalizing can help isolate the 
object from the background noises.  

 
Figure  68: Diagram for frame differencing 

 
To test the frame differencing properly, we would need to output the subtracted image to 
ensure it is correctly done. We would also need to compare the filters and see which ones 
will give the highest accuracy. By using shapes or other detectors, we may be able to 
detect fires through these subtracted images without the help of a neural network.  
Another method we would like to test is color classification. Since our system is 
specialized in detecting fires in the forest, the fire itself should have a distinguishable color 
difference compared to the background (woods, grass, etc.). We can utilize this difference 
by applying color classification in our system to identify where there is an intensity in the 
colors similar to flames.  
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To apply color classification into our system, we would need to focus on identifying red 
colors in the image. Then, isolate them from the background. We can use shape or other 
object detector like grouping in order to identify object in the image. Then, we can focus 
on the area with high intensity of red instead of looking over the whole image. Color 
classification itself can be done using OpenCV as well as the detectors such as shapes. 
 

 
Figure  69: Diagram for color classification 

There are different ways we can apply color classification by looking at different spaces 
such as RGB and HSV. We believe that focusing on RGB should be enough to be able 
to distinguish flames using color classification, but we have yet to test it using our system. 
We should have a better idea of this once we gather more data and images that the 
system will more likely encounter.  
 
Last method we would like to incorporate is optical flow. Similar to color classification, 
optical flow can be implemented using OpenCV. We can use it to identify an area with the 
densest movement and isolate that from the background. And then have a detector to 
help identify if the detected object is a fire. The basic flow of the optical flow is illustrated 
in the diagram below.  
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Figure  70: Diagram for optical flow 

We should test the optical flow with few example sets in order to ensure optical flow is 
being applied properly. We also need to ensure that optical flow is appropriate for 
detecting fires using OpenCV. We expect it to work well with easy implementation.  
 
The three methods mentioned previously (frame differencing, color classification, and 
optical flow) can help isolate and help the model identify the flame. After ensuring each 
method works properly, we can implement it to work with the selected neural network to 
produce better results. We can apply thresholding to identify if an isolation of an object 
happened after applying these methods. Then we can crop the image to focus on the 
suspected fire object and send it to the model. By doing so, we would reduce the amount 
of computation needed while decreasing other distraction for the model to make false 
positives. Object detectors also tend to work better with larger or focused object in the 
image. We expect that by combining methods and models should return better accuracy 
than running a pre-trained model alone.  
 
We would also like to add superpixel localization to our system if possible. This is a way 
to segment the image in a meaningful way to make it easier to identify fire with reduced 
complexity of neural network architecture. This may help in reducing the heavy 
computation compared to other models we discussed. It can also make it easier to isolate 
the detected fire before sending it to the neural network.There will be three stages of 
testing this method if we decide to utilize it to different models or our own neural network. 
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This method will have slightly different formatting of test plan as it is a way to segment 
whole image and not a color or motion detector.  
 

 
Figure  71: Diagram for Testing Superpixel Localization 1 

 

The first stage in testing superpixel localization is to make sure the function works properly 
and segments the image correctly. We would need to verify this by running it through 
different example sets and images. Then, we would manually check if the segmentation 
was successful or not. We need to ensure that the segmentation is effective around the 
flame. These steps are illustrated in the diagram above.  
 

 
Figure  72: Diagram for Testing Superpixel Localization 2 

The second stage of testing superpixel localization is to use the localization and rate how 
successful it segmented the objects especially flames. This is important for us to verify in 
order to help the model identify the flame effectively. If the localization was not successful, 
then there is not much benefit in applying and performing extra computations for our 
system. Based on the examples provided in OpenCV, it seems very reliable and we 
expect high accuracy of it segmenting the objects. 
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Figure  73: Diagram for Testing Superpixel Localization 3 

The final stage would be incorporating it with a neural network to verify if the fire is 
detected within that segmentation as seen in the diagram above. After verifying the 
superpixel localization, we could further apply color classification, frame differencing, or 
optical flow to further narrow down the image before sending it to the network. By doing 
so, it will greatly help the model learn and identify the flame. Segmentation may help in 
properly encompassing the flame instead of approximately applying bounding boxes or 
using shape detector.  
 
By having these methods, we can effectively eliminate unnecessarily processing by the 
neural network while achieving high accuracy. We would also need to manually verify the 
results of each one and calculate the accuracy in order to compare and choose which 
method is the best fitted for our system.  
 
After comparing the results through these tests, we would like to combine different models 
and methods together into one system as shown in the diagram below. 
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Figure  74: Diagram illustrating combining the method and model into one system of machine learning 

By doing so as illustrated in the diagram, we should be able to achieve better accuracy. 
We can also combine multiple methods or models together and cascade them into the 
system.  

 
With the processing subsystem: we can run the previously tested models or methods and 
see how the results may differ. By doing so, we can compare how the accuracy may 
change due to specification differences such as camera. It is also crucial to check the 
difference in time as Raspberry Pi Zero has lower processing power. If the software 
returns passing performance with our system, then we may further improve our system 
by testing the other models and methods. 
  
To set up the processing subsystem, we will need camera along with the board to capture 
an image. We can set up LED light or communication monitor between the board and 
computer to monitor the output of the board and see if it is properly receiving inputs. We 
also need to ensure that the camera is working properly by outputting the captured image 
to a monitor. Then, we can run the model or methods to see if it is functioning properly. 
We can set it up so that the board will respond if there is a fire detected and notify the 
system. For instance, having the LED light up when the fire is detected and off when the 
fire is not present. We can also use the communication monitor to do similar process. We 
can set it up so that the board will respond if there is a fire detected and notify the system. 
For instance, having the LED light u 
 
One of the hardest hurdles in applying this to our processing subsystem is 
accommodating the code to fit with the function of our embedded system as some may 
be limited and not applicable. We need to have functioning machine learning and 
computer vision applied to our embedded system while keeping the best accuracy as 
possible with best speed possible. If the current system cannot handle the computations 
or consume too much time to produce results, then we are also considering upgrading 
the system to Raspberry Pi 3 as it can handle more memory and more processing than 
Raspberry Pi Zero.  
Step-by-step: 

a. Code in computer to test the available pretrained models from YOLOv3.  
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b. Code in computer to test the optical flow using OpenCV 
c. Record the processing time and accuracy. How accurate did YOLOv3 detect and 

optical flow to detect (have most density in flame). 
d. Transfer the code to the Raspberry Pi and test after installing necessary libraries 

and adjusting the code to accommodate our MCU 
e. Record the processing time and accuracy  
f. Compare the results from computer and Raspberry Pi Zero. If they are not similar 

or significantly different, then we may have an issue with the code.  
g. Repeat with different models and methods to compare results from each other 

Or choose to have a method to pre-determine if there is a flame and then pass it 
on to a model to determine if there is a fire. This combines and considers the 
thresholds from both methods and models to determine the flame instead of 
reading two different outputs. We expect the accuracy to increase by combining 
them in such way.  

 

6.3.4. Networking 
 
The network hardware can be tested in a step-by-step procedure. First we start by 
sending simple strings between the devices. Once we can send strings, we can worry 
about meaningful strings and possibly streaming data. 

 
Step-by-step: 

a. Code in a computer to test the methodology 
b. Code in a computer to test the flow 
c. Program the microcontroller with a simple script to broadcast a string 
d. Program a different microcontroller to continuously receive all broadcasts 
e. Program the two to recognize each other’s unique ID and attempt to create a 

network where they can communicate with each other. 
f. Implement a blacklist so that close-range demonstrations can be made. 
g. Refine the software so that three or more units can be used to demonstrate their 

feasibility. 
 

6.4. Testing Environment 
 

In order to test the system, it will require to be in a place that has three conditions. The 
first one is direct line of sight testing which means it has to have large empty spaces half 
a mile to a mile long to for the best-case scenario. The following environments are 
potential testing environments.  
 
Remote at home testing: 
Prior to selecting the final components used for the final prototype, each of us will 
purchase the components we believe would be most suited for the project based on our 
individual background research. This will include each peer purchasing a raspberry pi, 
SD card, DC power source as well as the components we are responsible for in the 
project. This process will also include downloading any relevant software applications and 
becoming familiar with the chosen programming language, python.  
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During at home testing, the peer will attempt to test their components in a controlled 
environment. The sensors will be tested using a lighter to test for flame and gas. Smoke 
signals will be tested by burning wood and placing the sensors near the fire. This will also 
be necessary for calibrating certain sensors. The thermal camera will be tested in front of 
fire and non-fire conditions to generate data that will be used for machine learning. This 
dataset will be used to train the system and produce a model that can attempt to identify 
a fire and look at the conditions for future predictions. The LoRa module will be tested by 
attempting to establish communication with at least two devices to see if data can be sent 
and received. The solar panel system can be tested at home to observe and understand 
its ideal positioning for maximum sunlight absorption.  
 
On campus testing:  
 
UCF Arboretum  
The University of Central Florida has an arboretum that acts as a creative learning 
environment. The arboretum includes a 5-acre Cypress dome, an oak hammock of 3-
acres, and 15 acres of sand pine and Florida scrub connected to the original Arboretum 
by the saw palmetto community and the longleaf pine flatwoods. Currently the entire area 
of the arboretum includes 82 acres (LEE, 2020). The UCF arboretum has the landscape 
and environment for potential forest fires. Thus, it would be ideal to create a controlled 
fire in this space and determine if the sensors are able to detect fires. Moreover, testing 
in this environment will allow us to experiment with various mechanical designs and 
understand which design is best suited for this project. In addition, we would also like to 
understand where is the best placement of the devices on the tress: how close to the 
earth can the sensors be placed in order for it to be close enough to detect the gas, fire, 
and smoke without interrupting the natural environment and wildlife. Lastly, we would also 
like to test the range of the devices using the LoRa module. We would test the devices at 
10m, 50m, 100m, and 150m apart to observe if the communication and data transmission 
is still maintained. Moreover, we would also want to investigate how close the sensors 
should be for effective fire detection. 
 
Testing in this area will require permission from the UCF college of engineering 
department and the UCF facilities and safety department. In the event the project is ahead 
of schedule, we are also open to the possibility of testing the F.I.R.E device in a controlled 
fire that is routinely done by UCF Facilities and Safety team as a prevention mechanism 
for forest fires. The UCF arboretum would be the ideal testing environment since it is used 
by students from other colleges for educational purposes.  
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7. System Integration 
7.1. System Design 

 
An overall glance at the system shows the solar array hooked up to a voltage regulator 
which will output 12 volts and a max of 2 amps with the input from the array. That will then 
be feed into a Li-ion IC to handle the charging and battery health. That battery will then, 
with help from excess power from the solar panel, be inputted into two buck-boost 
converters to make a 5 volt and 3.3-volt rail. These two rails will handle power to the entire 
system as some components require specific voltages. The 5-volt rail will run the LoRa 
module and the Raspberry Pi and this rail will pull the most power out of the system due 
to how much power a Raspberry Pi requires. The 3.3-volt rail will handle powering all the 
sensors and will pull less power.  

 

Figure  75: Controlled fire at the UCF Arboretum (LEE, 2020) 
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Figure  76: High Level System View 

 

7.1.1. Sub-System Connections 
 

Each system must have all the connections necessary to communicate properly between 
each other but inside each system there are smaller components that need their own 
source of power or need to be connected to the same node as another system for 
grounding or the correct resistive purposes. To make sure everything is wired correctly 
the sub-systems were designed using KiCAD’s hierarchical sheet system. Each 
component was individually designed and linked together using this hierarchy structure, 
so the overall design didn’t get to cluttered or large to view and edit. Doing the designs 
like this also helped with making sure everything was wired correctly in the final assembly 
of the system. 
 

7.2. System Operation 
 

The system will operate in a cyclic fashion turning on to cycle through all the sensors to 
check if there is a fire under certain conditions. It will then process that information using 
computer vison on the Raspberry Pi for the infrared array and use state-space to store 
and check if the other sensors are within their constraints. This is depicted in the diagram 
below.  If everything is determined to be fine, then the machine will go back into a sleep 
mode and wait for its timer to turn itself back on and run through the same process. If the 
system runs through all its checks and determines that there is a fire The LoRa module 
will then be booted up and that data will be transmitted in a mesh network until it gets to 
an operator who is monitoring the overall system. That operator can then check what 
determined that fire and decide with human intervention if it is a false alarm or if they need 
to respond by the measures deemed necessary.  
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Figure  77: Sensors data sent to processor  

8. Administrative Content 
 
The following section is a discussion of the administrative content that comes from a 
project. Included will be the division of work, milestones and timelines, information about 
our sponsor work for Siemens and our cost. 

8.1. Division of Labor 
 
The project was divided into multi sub-parts for each team member to work on and 
specialize. Each subject is not mutually exclusive however, as the team is expected to 
help the others in their designs and research. Table 9 goes into what each team member 
was assigned to accomplish as well as a list that breaks down a little more about what 
that team member is doing specifically. Table 10 provides a detailed description. 
Table 12: Division of Labor 

 Area Focus 

Noora Sensors Hardware 

Nicholas Power & Mechanical Hardware 

Jonathan Control & RF Hardware & Software 

Arisa Data Processing Software 

 
Table 13: Division of Labor Breakdown 
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Engineering 
student 

System components Description 

Noora 

Flame Sensors: 
Near Infrared, Camera  
Smoke Sensors. 
Gas sensors 
Temperature/Humidity 
sensors 

Noora will focus on designing the printed circuit board 
which will include selecting appropriate sensors 
components and ensuring these sensors are able to 
detect fire elements such as flame, smoke, and volatile 
organic compounds, as well as communicate with the 
raspberry pi. Noora will work closely with Arisa to send 
raw data for data analytics and processing. 

Nicholas 

Solar Panel Power 
Battery Charging 
Protection. 
Power Regulation 

Nicholas will be responsible for designing printed 
circuit board that will be used for supplying power to 
the entire system. The system will be powered by a 
solar panel system. Nicholas will choose appropriate 
solar panels that will efficiently supply enough power 
to the system; this will include selecting the right type, 
model, and size of panels. Subsystems will need a 
3.3V and 5V supply, thus Nicholas will design the PCB 
with appropriate regulators and rails to ensure the 
components received ample and stable power supply. 

Jonathan 
Microcontroller Design 
Network Software 
RF Design 

Jonathan will be working on the communication 
between the devices. This will be done through radio 
frequency using the LoRa RF module. Jonathan will 
design the system to ensure communication between 
the devices is maintained and data from sensors can 
be sent to the hub using RF waves. Jonathan will test 
the range of the system for which data can be sent and 
design the communication network of the system. 

Arisa 

Sensor Data 
Processing Software 
Machine Learning’ 
Raspberry Pi 

Arisa will be responsible for interpreting the data 
coming from the sensors through the raspberry pi. By 
recording and analyzing the raw data from the sensors, 
Arisa will be able to train the machine to recognize fire 
and non-fire conditions using an algorithm. This 
algorithm will determine forest fire conditions and 
recognize all characteristics of fire such as flame, 
smoke, and VOC gasses. The signal will be sent to the 
microcontroller to trigger the alarm.  
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8.2. Project Milestones 
 

The following two tables provide the target milestones. Table 9 is the intended timeline 
for the spring 2020 semester. During this semester, the background research on the 
project’s need, standards, requirements, hardware components, mechanisms of 
detection, testing environment, sponsor requirements, logistics, feasibility is examined 
through the senior design 1 report. Each peer’s strengths and weaknesses are identified 
to be understand how each individual can contribute to the project. Moreover, areas that 
can be challenged and improved were also identified. Once this was recognized, 
assigning the project tasks and requirement to each peer became a natural and organic 
process. By the end of the spring semester, the group and the sponsor will have a 
reasonable understand of the project’s scope so that the prototyping stage can begin.  

 
Table 14: Spring 2020 Milestones 

Week Milestone (Tasks) Start Date Deadline 

1 to 2 Brainstorm ideas January 06, 2020 January 17, 
2020 

3 to 4 Choose a project and discuss 
basic design and roles 

January 20, 2020 January 31, 
2020 

4 Finish Divide and Conquer V1  January 31, 
2020 

5 Discuss the details of the project 
(components, functions, design) 

February 03, 2020 February 07, 
2020 

5 to 6 Update Divide and Conquer V2 
Finish proposal for sponsor 

February 03, 2020 February 14, 
2020 

6 to 9 Research and fine-tune design February 17, 2020 March 06,2020 

9 SPRING BREAK   

10 60-page Draft  March 20, 2020 

10 to 12 Finalize design 
Finish technical documentation 

March 16, 2020 April 03, 2020 

12 100-page Report  April 03, 2020 

12 to 15 Organize all documentations 
Acquire materials and 
components for prototype 

April 06, 2020 April 17, 2020 

15 Submit Final Documentation  April 21, 2020 
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Table 10 below shows the milestones for the summer 2020 semester. Summer is an 
accelerated semester with 4 weeks less than the other semesters. This leaves less 
opportunity for errors. As a result, after completing a robust report, the summer semester 
marks the beginning of the projects prototyping, testing, and implementation stage. The 
aim is to complete fulfilling the project’s intended purpose by July 31st. This final product, 
as well as electrical and CAD designs will be handed off to the sponsor. Moreover, the 
senior design 1 paper will be modified to reflect the project’s realistic achievements.   
 

Table 15: Summer 2020 Milestones 

Week Milestone (Tasks) Start Date Deadline 

1 to 2 Assemble/ Build prototype 
Test components 

May 11, 2020 May 22, 2020 

3 Acquire components for final 
product 
Adjust documentation 

May 25, 2020 May 29, 2020 

4 Build final product’s architecture June 01, 2020 June 05, 2020 

5 to 6 Integration Testing (hardware 
and software) 

June 08, 2020 June 19, 2020 

6 to 7 Make necessary adjustments June 22, 2020 July 3, 2020 

8 Final testing July 6, 2020 July 10, 2020 

9 Finalize product July 13, 2020 July 17, 2020 

10 to 11 Finalize documentation July 20, 2020 July 31, 2020 

11 Final Product  July 31, 2020 

 

8.3. Sponsor Information 
8.3.1. Siemens Foundation 

 
Siemens Foundation was founded in 1998 as a non-profit organization in the United 
States (Siemens STEM Day, n.d.). The foundation has invested more than $122 million 
in the United States to foster an inclusive and innovative culture through a variety of 
professional developments programs for the Siemens workforce, STEM outreach 
activities for youth, and scholarships for future students (Siemens STEM Day, n.d.).  
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The most notable program is Siemens STEM day which initially was an event dedicated 
to engaging K-12 students in a variety of hands-on activities through experiments and 
problem-solving exercises. Currently the program has expanded past a one-time event 
to a portal that provides employees access to over 150 STEM activities allowing Siemens 
volunteers to facilitate STEM day activities any time of the year in addition to STEM day 
(Siemens STEM Day, n.d.). These activities range from easy to difficult and revolve 
around themes popular in the industry. The STEM kits target students of all ages, 
however, there is currently a demand for activities that target older students to emphasize 
various applications of scientific knowledge in real life, especially in disciplines that are 
needed in the US. Facilitating these activities is important when considering the demand 
for STEM professionals and closing the opportunity gap for the youth.  

 

8.3.2. A Product for Siemens STEM Initiative  
 
Ultimately, the F.I.R.E device will not only serve its purpose of forest fire and detection 
and monitoring, but also will be meticulously designed keeping in mind that the product 
will serve as an introduction to electrical engineering kit. Through this kit, students will 
become exposed to sensor technology, programming and communication through mesh 
network, and an optional hands-on experience soldering parts to a printed circuit board. 
The importance of engaging the youth in STEM related activities has gained traction due 
to the decline in the overall number of students pursuing STEM fields. Thus, exposing 

Figure  78: 30+ Years of Academic Partnership Between Siemens & UCF to foster the goals of Siemens 
Foundation (Siemens STEM Day, n.d.) 
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STEM opportunities to young students, especially to students from marginalized groups, 
is important in encouraging and fostering a culture of innovation, research, and diversity. 
SIEMENS’ STEM initiative is founded on these values. Thus, this product will be designed 
to be used in SIEMENS STEM Day activities to expose students to fundamental concepts 
of electrical engineering and importance of environmental consciousness.  

 
The product is aimed to be utilized as an advanced activity for students ideally between 
the 9 – 12th grade that are in the early stages of exploring and deciding career options to 
pursue after completing high school. This project will help introduce and educate students 
on a leading environmental issue, forest fires, while also demonstrating how electrical 
engineering concepts can be used to solve a growing environmental concern. Moreover, 
students will also learn about the fire and gas sensors that are used for SIEMENS gas 
turbines and how their function compares with the sensors designed in the kit. Overall, 
students will gain an understanding of how the system was designed, and how it can be 
implemented. This learning kit will also be a unique exposure to engineering project 
management and execution. 

 
The objectives of the activity are detailed below:  
 
1. Understanding forest fires, their growing intensity, and how fire emissions are 

shaping climate change. 
2. Solving this issue by providing proactive solutions to mitigate the risks. 
3. Understanding the technology used to tackle the issue:  

a. Flame detection (visual and non-visual techniques) 
b. Gas detection 
c. Smoke detection through photoelectric sensors 

4. [Optional] Soldering basic components to a printed circuit board.  
5. Straightforward programming exercise understanding how values are read and 

communicated in a network. 
6. Testing the device and witnessing how it can react to a fire. 

 
At the completion of the project, the final product will be delivered to SIEMENS’ STEM 
initiative group with a detailed lesson activity guide for Siemens employers to use for 
STEM day activities. In addition, the printed circuit board schematic and design, as well 
as any CAD design, will also be provided so that additional boards can be produced for 
enhanced learning activity that incorporates soldering components to the printed circuit 
board.  
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8.3.3. Connection to the Siemens industry 
 

A significant portion of the project’s requirement and the sponsorship from Siemens is not 
only supporting our aspirations of designing this system but also emphasizing how the 
product connects to the Siemens industry in terms of the similarities in the technology 
and strategies used, as well as the potential opportunity for Siemens to utilize this product 
in their industry.  

 
Siemens AG headquarter is in Munich, Germany (Siemens STEM Day, n.d.). It is a 
multinational conglomerate and considered to be one of the largest industrial 
manufacturing companies in Europe. The main industries it is involved in are: Energy, 
Healthcare, and Infrastructure. The Siemens offices in Orlando, FL are primarily focused 
on power generation, energy efficient buildings and infrastructure, wind energy, and 
healthcare (Siemens STEM Day, n.d.). Its proximity to the University of Central Florida 
has enabled a partnership allowing for $10 million in investment for research projects at 
the university such the Digital Grid Innovation Laboratory, Center of Innovation for 
Diagnostics & Prognostics, and the Siemens Energy Center (Siemens STEM Day, n.d.).  

  

8.3.3.1. Gas Turbine 
 
Siemens’ gas turbine manufacturing and commissioning is one of the dominating 
businesses in Orlando, FL.  Siemens gas turbines range from 4 – 593 MW and are used 
for a variety of applications including power generation for utilities, independent power 
producers, oil and gas as well as industrial users such as chemicals, pulp and paper, food 
and beverage, sugar, automotive, metal working, mining, cement, wood processing, and 

Figure  79: Overview of Siemens gas turbines (Siemens, 2019) 
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textiles. Siemens gas turbines fall into one of three categories: heavy-duty, industrial, or 
aeroderivative (Siemens, 2019; Nancy H Ulerich, 2013).  

The primary components of the gas turbine using the Brayton cycle is a compressor, 
combustion chamber, gas turbine, and generator as depicted below. Siemens gas turbine 
control system includes a variety of instruments used to measure the gas turbines 
temperature, pressure, speed, and vibration. The main interest for this project will be the 
temperature sensing of the system for fire and smoke detection. Current temperature 
sensing for the gas turbines includes a gas thermocouple and the infrared temperature 
sensor (Isiadinso, 2015; RAITHATHA, 2013).  
 
A thermocouple is composed of two dissimilar metals connected together creating a 
junction through welding. (Isiadinso, 2015) One end of the connection is taken for 
reference and other end of the junction is used for measurement (Isiadinso, 2015). 
Temperature measurement is possible when there is temperature difference between the 
two junctions; this causes an electric current to flow in the circuit (Isiadinso, 2015). By 
understanding voltage-temperature relationships of metal combination, the temperature 
can be measured (Isiadinso, 2015). There are many types of thermocouples; however, 
type K thermocouple is commonly used in gas turbines. Siemens SGT-A05 KC uses the 
Measured Gas Temperature (MGT) thermocouple to extend the in-service life of the 
turbine and it is also used in 180 other engines Pictured below is the MGT thermocouple 
(Siemens AG, 2019). The SGT-A05 KB/KH also uses the TOT Thermocouple or the TIT 

Figure  81: Thermocouple used in Siemens SGT (Siemens AG, 2019) 

Figure  80: Typical gas turbine cycle as stated in (Isiadinso, 2015), the figure shows where a fire and gas sensor 
would be needed. 
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thermocouple to improve overall accuracy in temperature monitoring (Siemens AG, 
2019).  
Infrared temperature sensors are a good option to use to minimize the contact between 
the sensor and the object it is measuring, which for gas turbines is the blade. Infrared 
sensors function by “focusing the object’s infrared energy onto photodetectors” (Isiadinso, 
2015).  
This provides an electrical output signal that is proportional the infrared energy received. 
The infrared energy emits varying levels of infrared energy to the object according the 
temperature which allows for an accurate description of the object’s temperature 
(Isiadinso, 2015). Siemens SGT-750 uses infrared cameras to measure the temperature 
of the blade surface (Isiadinso, 2015). Temperature is recorded each rotation and is used 
for the cooling system (Isiadinso, 2015). Below is an image of the infrared temperature 
sensor used in the SGT-750.  

 

 
 
Project F.I.R.E utilizes similar techniques used in the Siemens gas turbine for fire and 
smoke detection. Siemens uses a thermocouple which is a typical choice for a higher 
scale, range, and accuracy for heavy industrial applications. In our project, a temperature 
sensor IC will be utilized since it will help drive the cost and size down for forest fire 

Figure  82: Infrared temperature sensor used in the SGT-750 (Isiadinso, 2015).  
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applications. The IR sensor is comparable to the flame detection technique F.I.R.E as it 
involves detecting hidden infrared rays to measure thermal heat of the gas turbine blades. 
 

8.3.3.2. Digitalization/Internet of Things 
 

A growing field in the industry is the digitalization of many products results in a demand 
for the Internet of Things (IoT). Siemens offers IoT services ranging from Consulting, 
Solution Design, and Solution Development and Implementation which all includes 
Change Management and Cyber Security (Siemens, 2019). There are five phases that 
Siemens uses for successful IoT implementation detailed below in the diagram (Siemens, 
2019).  
 

IoT as discussed previously in this paper has the potential to digitalize many industries 
including manufacturing, energy utilities, healthcare, transportation and building 
technologies, which are the industries Siemens is mostly tied to. Before the users can 
benefit from the insights of IoT, data must be collected and sent through a gateway data 
communication (Siemens, 2019). The data is then transferred and stored where it can be 
used to conduct data analytics and conduct machine learning algorithms (Siemens, 
2019). From here, it can be used to provide insight for efficiency and create better 
business models (Siemens, 2019).  

 
Siemens has been heavily involved in IoT as the possibilities of improving business and 
performance for the industries it is involved in are endless. For example, Siemens was 
involved in an air quality monitoring system in the city of Nuremberg. Nuremberg city 

Figure  83: IoT integration cycle developed by Siemens 
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officials were concerned about the air pollution as a result of increased traffic which made 
it difficult for the city to maintain recommended levels of nitrogen dioxide set by the World 
Health Organization (Siemens, 2019). Siemens set up an IoT system that allowed it to 
collect data such as air pollution levels, weather, and traffic patterns from sensors placed 
around the city (Siemens, 2019). This data is then used to forecast the city’s air quality 
for the next 5 days (Siemens, 2019). With this data, the city is able to take appropriate 
measures to reduce air pollution levels. The Siemens City Air Management and the City 
performance Tool is also able to conduction simulations and make long term predictions 
factoring various parameters such as environmental legislature and new technology; they 
are now able to make predictions until the year 2030 with remarkable accuracy (Siemens, 
2019).  
 
Another case were Siemens was able to utilize IoT was in the case of the Sello shopping 
mall in Finland (Siemens, 2019). The shopping mall wanted to increase its energy 
efficiency since it accommodates more than 24 million shopper every year. Siemens 
engineers turned the mall into a “virtual power plant” and it was able to operate as a load 
for the Finnish demand response markets (Siemens, 2019). 2 MW batteries were installed 
with a solar panel system that included a microgrid with smart building automation and 
cloud analytics (Siemens, 2019). The process took a few years using an iterative 
approach and followed the five phases depicted in the diagram (Siemens, 2019). Sensors 
were installed in the building management system that measured weather data, energy 
consumption, energy price, weather forecast data and the amount of energy stored in the 
battery (Siemens, 2019). By using smart analytics, an algorithm was designed to 
determine whether energy should be drawn from the solar panels, the 2-MW battery 
(stored energy), or the national energy provider when electricity rates are low (Siemens, 
2019). This implementation helped reduce carbon emissions and saved the business 
€643,000 ($690,00) (Siemens, 2019).  

 

8.3.3.2.1. Siemens IoT implementation phases in F.I.R.E. 
 

Interestingly, this project will adopt similar phases during its life cycle, which is an 
important connection this project has to Siemens’ current IoT practices. In the initial 
phase, this project underwent strategy development where the best method of fire 
detections was investigated. This included identifying mechanisms and principles of 
detection that are used in the industry. The challenges were also explored, such as range 
and scalability during this phase. Most importantly was also determining how this project 
provides a value not only for us, but also Siemens and how this project aligns with the 
ambitions of the Siemens Foundation and the Siemens’s industry goals.  
 
Once the idea was established, the technical implementation next stage is followed. As 
mentioned, Siemens is our customer and they are at the center of our focus. Their 
requirements are to create a solar powered forest fire detection and monitoring system 
that will also be used as STEM kit to educate the youth on electrical engineering concepts, 
and also how the technology and implementation relates to the industry. Another crucial 
requirement is heeding their budget requirement of approximately $500. Furthermore, the 
university (UCF) is also our customer because they are expecting a senior design project 
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that fulfils the criteria set by Accreditation Board of Engineering and Technology. Lastly, 
this product has potential to be used in the industry, therefore government of countries 
experiencing forest fires as well as the authorities that protect reservations that are likely 
to experience forest fires are our unheard audience; we are able to interact with them 
directly, however we have built our assumptions based on their experiences and the 
technologies they have used for forest fire detection and past research.  

 
By integrating these three audiences’ concerns, demands, and needs as well as our own 
skills set and experience, we are able to identify a reasonably sound solution and initiate 
the first prototype. The protype will be used to gather as much data possible; in this 
project’s case once the sensors have been selected and are fully functional, the sensors 
will begin accumulating temperature, humidity, pressure, gas concentration levels, smoke 
and flame conditions. This historic data will be useful for mathematical and statistical 
methods to determine an algorithm than assess various parameters and identify similar 
patterns in the data set. Machine learning will be used to train the model and improve 
prediction outcomes. 

 
The third stage involved connecting, adapting, and integrating systems. The main 
components in this process include the sensors, communication networks, cloud 
infrastructure and IoT platforms and applications. In this process the data gathered from 
the sensors can be send to other devices and the main hub which will house all the 
database. The communication protocol becomes vital as it determines range, latency, 
data volume, and transmission frequency. The F.I.R.E system uses RF communication 
from the LoRa module which accounts for each of these factors. The database has yet to 
be established for this project however the two options will mostly like be either premise-
based or cloud-based. Communication is vital however it is also important that the data 
from the various sources are in a uniform language in order for it to be processed to a 
device or cloud.  Once the machine learning algorithms are able to model and predict the 
data, the outcome will be presented in a visually clear manner for the user to understand.  

 
The fourth stage used in Siemens IoT implementation which will be followed in project 
F.I.R.E is analyzing the data. As mentioned, the data needs to be easy to read and 
understand so that appropriate action can be taken with the information provided. In this 
stage it is important to differentiate between correlation and causality. Correlation is a 
statistical measure to observe the relationship between two variables; the relationship 
can be random without grounds for a direct cause. As a result, correlation can produce 
noise in the data which can lead to less accurate predictions and outcomes. Causality is 
a relationship that describes the cause-effect connection. Therefore, during this stage is 
important to interpret the data logically to avoid misrepresentation and to continually train 
the system to improve and optimize models to avoid false-positive outcomes of a fire.  

 
The final stage is operation. Once the system is operating successfully, it will be important 
to maintain it regularly to avoid malfunctions. With respect to the F.I.R.E project, this 
device will be handed off to Siemens to use for future STEM events potentially 
manufacture more STEM kits in the future. To ensure proper maintenance and use is 
observed, a guide will be provided with the step-by-step procedure of operating the 
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system and testing it under various conditions. This guide will be a combination of written 
material and video tutorials to ensure it can be properly understood and avoid vague 
rhetoric. It will be targeted towards Siemens engineers who will be conducting the 
activities and will be responsible for maintaining the system’s operational standards.  
 
 

8.3.3.3. Siemens Gamesa: Wind Turbines 
 

In 2016, Siemens announced it would merge it wind businesses with Gamesa with a 59%-
41% split between the two shareholders (Siemens Gamesa, n.d.). Siemens Gamesa is 
one of the leading manufacturers and suppliers in the world for wind turbines. Siemens 
Gamesa have installed wind turbine technology in over 90 countries with base capacities 
exceeding 99GW (Siemens Gamesa, n.d.). Siemens Gamesa’s businesses is primarily  

 
 
focused in onshore and offshore wind turbines and service maintenance. They are 
situated globally and also have an office in Orlando, FL. 
 
 
Like gas turbines, wind turbines need to be maintained and protected to ensure optimal 
performance. Gas turbines are more likely to catch fire because the nature of the fuel is 
highly flammable (Froese, 2016). With wind turbines, although it is not powered by a 
flammable source, the wind turbine system still needs to be designed with a fire detection 
system since it is designed with various mechanical and electrical components where a 
potential malfunction could start a fire (Froese, 2016). Most wind farms in isolated areas 
and the possibility of a turbine being struck by lightning is also a concern. Earlier in 
February 2020 there was a turbine rotor that caught fire in a wind farm in northeastern 

Figure  84: Nacelle of a wind turbine where the AFFS is installed 
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Brazil; the turbine was a 2MW G97 Siemens Gamesa turbine (Spatuzza, 2020). Similarly, 
a G80 2MW wind turbine caught fire in Japan in 2017 (Foster, 2017). The issue with fires 
in wind turbines is they become difficult to save the turbine once it catches fire, especially 
if the source of the fire is in the nacelle as shown in the figure (Froese, 2016). Repair 
costs are very high and put technicians who must conduct the offshore repairs at risk of 
injury or death (Froese, 2016). Most wind turbines include fire-protection products which 
include circuit breakers, semiconductor protection fuses, differential current monitoring 
devices, measuring instrumented for power monitoring, residual-current devices, and 
busbars (Froese, 2016).  
Graduated protection is also an additional measure taken to avoid turbine failures; this 
includes disconnecting defective systems from the grid earlier on to avoid a fire from 
igniting (Froese, 2016).   
 
In 2014, Siemens Building Technologies Division announced it developed automatic fire-
extinguishing system for off-shore turbines and the new system would be installed at 
Riffgat project in the German North Sea (Garus, 2013). The Active Fire Fighting System 
(AFFS) works by detecting fires by reading sensor signals from the Advanced Signal 
Analysis (ASA) fire detectors to alert the system of a fire in a nacelle or tower (Garus, 
2013). The system then activates nitrogen gas to extinguish the fires, operating on 
principles of oxygen displacement, using the Sinorix gas fire extinguishing system (Garus, 
2013). The turbine is shut down until the fire is extinguished. An advantage to this system 
is that it does not produce false alarms and low maintenance and resistant (Garus, 2013). 
The added extinguishing feature prevents the fire from spreading nearby and reduces the 
need for fire helicopters (Froese, 2016). Moreover, the operators can remotely access the 
system and identify the source of the fire from the control station which will allow turbines 
to resume activity as soon as possible. For added safety two AFFS systems are installed 
in a turbine: in the nacelle and in the tower, both operate independently in the event of a 
power failure or network outage. Currently, the AFFS system is in operation in 30 wind 
turbines (Garus, 2013). Siemens was recognized as the first company to test and approve 
a fire detection and extinguishing system for wind turbine equipment; it has been certified 
by VdS Schadenverhütung GmbH and approved by Germanischer Lloyd (Garus, 2013).  
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Figure  85: ASA fire detectors by Siemens              Figure  86: Sinorix fire extinguisher used by Siemens 

Siemens AFFS fire detection and prevention system holds many similarities to our device. 
The system uses a similar technique of installing sensors that read and process data of 
the current conditions and an algorithm is then used to identify probably cases of a fire. 
One distinguishing feature that the AFFS device has is that it is paired with an 
extinguishing feature for swift prevention of the fire spreading (Garus, 2013). This feature 
was a potential feature we had also considered but it was ruled out on the basis that the 
extinguishing gasses could harm the wildlife, animals, and the forest environment. Thus, 
it was decided that extinguishing the fire was outside the scope of this project and could 
perhaps be further researched using drones. However, this difference is mainly attributed 
to the fact that the intended purpose of the AFFS system is for wind turbines that typically 
located in remote areas. This simply establishes the importance of recognizing the 
planned purpose of the product and how it is integrated during the design and prototyping 
process. 
 

8.4. Estimated Cost 
 
The table below, Table 16, is an estimated list of costs associated with our project. A 
major target of this project is delivering a system that is cost effective while maintaining 
product performance. Based on preliminary research and experience, an estimated cost 
breakdown was prepared. The data included in Table 3 is a rough cost estimate on items 
that we believe could be implemented or critical to the system. The system will be 
composed of 3 to 4 devices that will communicate data with each other. Thus, the cost 
below illustrates the total cost of designing and implementing a system with multiple 
devices.  

 
The table acts as a guide to see the general cost for the system and initial plan. Cost is 
determined by the distributor price when purchasing a single item, not in bulk. As we 
progress further into the project, potential areas to cut cost will become apparent through 
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careful research, design, and testing. The total cost below does not take into account the 
cost of thermal camera/sensor array.  
 
Table 16: Estimated Cost 

Item Estimated Cost ($) 

Solar Panel System 100 

Sensors*  

Gas sensors 50 

Infrared sensors (flame detection) 50 

Particle sensors (smoke detection) 20 

Thermal Camera / Sensor Array 200 

Temperature 1 

Humidity  1  

Electronics*^  

Controller 20 

General components  
(resistor, capacitors, inductors, connectors) ^ 

30 

Specialized components  
(voltage regulation, MPPT, radio frequency) ^ 

30  

PCB Manufacturing*^  60 

Prototype  
(machine shop labor if applicable) 

80 

Development kit (for software)^ 30  

Miscellaneous (solder and jumper wires) 40  

  

Total Cost** ≈ $500.00*** 

 
* Shipping not included in cost approximation. 
** Assuming one of each was purchased and each is used in the final design. Some items in 
this list may not be used. 
*** Cost does not include thermal camera.   

 
^This item is not necessarily inclusive, i.e. it does not include administrative or other cost.  



126 
 

Appendix A: Sponsor Branding Approval 
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