
i

F.I.R.E: Fire Intelligent Response Equipment
Department of Electrical Engineering and Computer Engineering
Senior Design I Project Report, Group 4, Spring 2020

Noora Dawood – Electrical Engineering

Nicholas Hainline – Electrical Engineering

Jonathan Kessluk – Computer Engineering

Arisa Kitagishi – Computer Engineering

The Siemens and STEM@SIEMENS logo are reprinted with permission from Siemens / STEM @ Siemens.
This is a project sponsored by Siemens and is not a Siemens Publication.

ii

Table of Contents

Table of Contents ..ii

Table of Figures ... v

Index of Tables .. vii

1. Executive Summary ... 1

2. Product Description .. 1

2.1. Motivation .. 1

2.2. Goals and Objectives .. 2

2.3. Requirements and Specifications ... 3

2.4. House of Quality .. 4

3. Design Constraints and Standards .. 5

3.1. Table of Standards .. 5

3.2. Other Safety Concerns ... 6

3.2.1. RoHS .. 6

3.2.2. Battery Safety .. 6

3.2.3. Electrical Safety .. 7

4. Research and Background Information .. 7

4.1. Current Fire Detection Systems .. 7

4.1.1. Products Used in the Industry .. 7

4.1.2. Similar Project ... 8

4.2. Background Research .. 9

4.2.1. Serial Communication Protocols .. 9

4.2.2. Sensors .. 11

4.2.3. Fire Resistant Enclosure Materials .. 18

4.2.4. Battery Charging and Battery Chemistries ... 20

4.2.6. Power Supply Topology ... 24

4.2.7. Solar Array Design ... 26

4.2.8. RF Design and Frequency Selection ... 28

4.3. Component Research ... 30

4.3.1. Controller Selection .. 30

4.3.2. Radio Frequency Communication Technology .. 31

4.3.3. Fire Detection Technologies ... 31

iii

4.3.4. Software Tools .. 38

4.4. LoRa .. 42

4.4.1. LoRa Overview and Definition of IoT ... 42

4.4.2. Quick Discussion of Common Modulation Techniques 42

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa 43

5. Design .. 44

5.1. Use Cases .. 44

5.1.1. Uses Case Diagram ... 44

5.1.2. Functional Design ... 45

5.2. Hardware Design ... 45

5.2.1. Hardware Block Diagram .. 45

5.2.2. Microcontroller and Processing Device ... 46

5.2.3. Hardware Schematics .. 47

5.2.4. Mechanical Design ... 54

5.3. Software Design .. 57

5.3.1. Design Methodology .. 57

5.3.2. Software Block Diagram .. 58

5.3.3. Network Software ... 59

5.3.4. Software Events & Flow .. 65

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss 69

5.3.6. Network Packet Types ... 70

5.4. Machine Learning .. 71

5.4.1. Methods ... 72

5.4.2. Neural Network Frameworks .. 87

5.4.3. Settings for Machine Learning .. 88

5.4.4. Dataset ... 89

5.4.5. Summary of Machine Learning .. 90

6. Testing and Prototyping .. 91

6.1. From Nothing to Something ... 91

6.1.1. Power Subsystem ... 91

6.1.2. Sensor Subsystem ... 92

6.1.3. Network Subsystem ... 92

6.1.4. Processing Subsystem .. 93

iv

6.2. Step-by-Step Hardware Test Plan .. 94

6.2.1. Power.. 94

6.2.2. Hardware Sensor Testing ... 94

6.2.3. Controllers ... 95

6.2.4. Radio Frequencies ... 96

6.3. Step-by-Step Software Test Plan .. 97

6.3.1. Connection Between the Hardware and Software 97

6.3.2. Software Development for Sensors from Hardware Testing 97

6.3.3. Computer Vision ... 97

6.3.4. Networking ... 106

6.4. Testing Environment ... 106

7. System Integration ... 108

7.1. System Design ... 108

7.1.1. Sub-System Connections .. 109

7.2. System Operation .. 109

8. Administrative Content .. 110

8.1. Division of Labor .. 110

8.2. Project Milestones ... 112

8.3. Sponsor Information .. 113

8.3.1. Siemens Foundation .. 113

8.3.2. A Product for Siemens STEM Initiative ... 114

8.3.3. Connection to the Siemens industry .. 116

8.4. Estimated Cost ... 124

Appendix A: Sponsor Branding Approval ... 126

Appendix B: References ... 127

v

Table of Figures
Figure 1: House of Quality .. 4
Figure 2: Arduino Uno being used in a similar project ... 8
Figure 3: SPI Topology ... 10
Figure 4: I2C Topology ... 10
Figure 5: Timing Diagram of I2C ... 11
Figure 6: Acoustic gas detection method .. 13
Figure 7: Visual representation of photoelectric smoke detection 14
Figure 8: Hidden Markov model used to detect flame flicker 16
Figure 9: Convolution neural networks approach layers .. 17
Figure 10: Example of the Wald-Wolfwitz randomness test being used for flame
detection .. 18
Figure 11: Synthetic Fiber Kevlar .. 19
Figure 12: Carbon Fiber Weave .. 20
Figure 13: Maximum Charge/Discharge Cycles Versus Battery Type 20
Figure 14: Self-Discharge Rates of Batteries .. 21
Figure 15: Temperature Vs Charge ... 22
Figure 16: Temperature Vs Time (cycles) ... 23
Figure 17: Azimuth and Elevation .. 27
Figure 18: Signal Attenuation Vs Distance of Different Frequencies 29
Figure 19: Hydrogen sensor mounted to a tree during an experiment done in Humboldt
University in Berlin, Germany. .. 32
Figure 20: FireWatch adopts a similar concept to our method of scattering sensors in a
forest, except their system uses cameras .. 33
Figure 21: Spectrogram of LoRa physical layer .. 43
Figure 22: Use Case Diagram .. 45
Figure 23: Hardware Design Block Diagram .. 46
Figure 24: RF Switch Schematic .. 47
Figure 25: SAMR35 Preliminary Schematic ... 48
Figure 26: Raspberry Pi Connection Preliminary Schematic .. 48
Figure 27: Voltage Regulator Schematic .. 49
Figure 28: Top View Solar Panels .. 49
Figure 29: Gas Sensor Schematic ... 50
Figure 30: Air Quality Table ... 50
Figure 31: Smoke Sensor Schematic ... 51
Figure 32: Smoke chamber .. 51
Figure 33: NIR Sensor Schematic .. 52
Figure 34: Thermal Camera Sensor Array ... 53
Figure 35: Thermal Camera Schematic .. 54
Figure 36: Mechanical Design A .. 55
Figure 37: Mechanical Design B .. 55
Figure 38: Mechanical Design C .. 56
Figure 39: Mechanical Design D .. 56
Figure 40: Software Design Block Diagram .. 58
Figure 41: Join Request flow diagram .. 59
Figure 42: Fire Packet flow diagram ... 60

https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311108
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311125
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311125
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311135
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311137
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311139
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311142
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311143
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311144
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311145

vi

Figure 43: Network Control State Diagram ... 62
Figure 44: General software flow when power is applied to the system 65
Figure 45: Raspberry Pi Flow ... 66
Figure 46: Raspberry Pi - Network Controller Communication Diagram 67
Figure 47: Known Connections Diagram – Mesh ... 67
Figure 48: Actions taken on a Message Received event.. 68
Figure 49: Raspberry Pi decision making ... 69
Figure 50: Lost Packets Diagram ... 70
Figure 51: Comparison of other state-of-art models on the COCO dataset 73
Figure 52: YOLO Bounding Boxes ... 74
Figure 53: The structure of Faster RCNN ... 76
Figure 54: Comparison between MobileNetV2 and MobileNetV3 77
Figure 55: Frame Differencing .. 78
Figure 56: Frame differencing continued .. 79
Figure 57: Color Classification using OpenCV ... 81
Figure 58: Color of Fire Classification .. 82
Figure 59: Dense Optical Flow ... 83
Figure 60: Superpixel Localization from Durham University ... 84
Figure 61: FireNet Architecture .. 85
Figure 62: InceptionV1-OnFireNet Architecture ... 85
Figure 63: : Implementation of Superpixel Localization with CNN 86
Figure 64: Superpixel Localization using OpenCV ... 86
Figure 65: General diagram for testing models such as YOLO and Faster RCNN 98
Figure 66: General software flow of the object detector through a model 98
Figure 67: General diagram for testing methods such as color classification and optical
flow .. 99
Figure 68: Diagram for frame differencing .. 100
Figure 69: Diagram for color classification ... 101
Figure 70: Diagram for optical flow ... 102
Figure 71: Diagram for Testing Superpixel Localization 1 .. 103
Figure 72: Diagram for Testing Superpixel Localization 2 .. 103
Figure 73: Diagram for Testing Superpixel Localization 3 .. 104
Figure 74: Diagram illustrating combining the method and model into one system of
machine learning ... 105
Figure 75: Controlled fire at the UCF Arboretum .. 108
Figure 76: High Level System View.. 109
Figure 77: Sensors to Data .. 110
Figure 78: 30+ Years of Academic Partnership Between Siemens & UCF 114
Figure 79: Overview of Siemens gas turbines ... 116
Figure 80: Gas turbine cycle ... 117
Figure 81: Thermocouple used in Siemens SGT .. 117
Figure 82: Infrared temperature sensor used in the SGT-750 118
Figure 83: IoT integration cycle developed by Siemens ... 119
Figure 84: Nacelle of a wind turbine where the AFFS is installed 122
Figure 85: ASA fire detectors by Siemens Figure 86: Sinorix fire extinguisher
used by Siemens 124

https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311181
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311184
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311185
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311186
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311187
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311188
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311189
https://knightsucfedu39751-my.sharepoint.com/personal/nooradawood_knights_ucf_edu/Documents/Senior%20Design%20SPRING%20-%20SUMMER%202020/SD%201/Senior%20Design%20Paper/SD1%20Final%20Paper.docx#_Toc38311190

vii

Index of Tables

Table 1: Project Requirements .. 3
Table 2: Project Constraints .. 3
Table 3: Table of Standards and Regulations ... 5
Table 4: Gas Measurements in the Atmosphere During a Fire 12
Table 5: Comparison Between Technology Ranges and Frequencies 28
Table 6: Comparison of Microcontrollers ... 31
Table 7: Gas Sensors .. 34
Table 8: Smoke Sensors ... 36
Table 9: Flame Sensors .. 37
Table 10: State Transitions ... 64
Table 11: Packet Types ... 71
Table 12: Division of Labor .. 110
Table 13: Division of Labor Breakdown ... 110
Table 14: Spring 2020 Milestones ... 112
Table 15: Summer 2020 Milestones .. 113
Table 16: Estimated Cost .. 125

1

1. Executive Summary

Fires cause massive environmental damage. This damage can be in the form of physical
damages but also the monetary value of all the structures and items it destroys. Timely
response to a fire is key as the sooner a team can be assembled to fight the fire the less
damage that occurs. The F.I.R.E. system’s goal is to detect fires and send alerts about
the fire across large distances so that response teams can be brought together swiftly.
This allows cities, states, and governments to effectively and efficiently monitor forests
and large expanses of land for fires and alert a location that could be many miles away
from the starting point of the fire. The system uses new wireless technology combined
with machine learning and image processing techniques to determine if there is a fire in
its vicinity and send an alert across the network. Creating a mesh network, the system
will send alerts to all other systems and these notifications will get filtered through the
system to a central location so that the alert can be handled. Using newer wireless
technology LoRa and the power of machine learning, the system will accurately and
efficiently monitor these large areas and assist in preventing the devastation caused by
a fire.

2. Product Description

The following sections cover items relating to the product. The motivation, goals, and
objectives preface everything as the project must fall back on them to complete its goal.
Furthermore, this section covers the Requirements for the system and the “House of
Quality” which helps product development by showing the relationship between customer
requirements and design requirements.

2.1. Motivation

Over 100,000 forest fires have occurred worldwide. In the past, forest fires were
considered a natural cycle and were ignored (Ouni, Ayoub, & Kamoun, 2019; Jurvélius,
2003). However, with increasing awareness emphasizing the preservation of natural
resources, as well as recent forest fires, have put forest fires at the forefront of global
environmental concerns especially due to the fires Australia in 2001 and 2002 and USA
in 2002 (Jurvélius, 2003). Forest fires not only increase the levels of carbon dioxide in the
atmosphere, but also burn vegetation and plants that act as nature’s CO2 sinks.

The increased carbon dioxide impacts air quality leading to smog and escalates the rate
of global warming (Alkhatib, 2017; United Nations Enviroment Programme, 2020). In
addition, humans and endangered animals’ fatalities have been reported due to forest
fires. As a result, forest fire detection and monitoring systems have sparked the interests
of scientists and researchers worldwide.

2

The purpose of this project is to design and build a solar powered forest fire detection and
monitoring system that will serve as a preventive measure for forest fires. This device
would ideally be used in areas where human activity is present such as campsites
especially parts of the forest that are highly susceptible to forest fires. This device can
also be used to monitor and detect forest fires to help researchers and firefighters
determine incoming fires or the severity of the existing fires. Thus, the device is aimed for
prevention and to facilitate extinction of forest fires.

2.2. Goals and Objectives

The main goal for this project is to design a system composed of devices whose main
purpose is detecting and monitoring forest fires. The devices will be portable so that in
can be mounted on trees and will be able to communicate and send data to the main hub
where a forest ranger can monitor forest conditions. Moreover, the system can be
calibrated to work under various forest environments.

Hardware: The hardware of the system will include a solar panel system, power
regulation system, sensors for flame, smoke, and gas detection, antenna and radio
frequency hardware, and processor for network and sensor data.

Software: There are two parts to the software of the system: Network and Fire Detection.
The Network software will manage and maintain the network and allow for sending
messages through the network to a “gateway”. The Fire Detection software will use
sensor data to determine, through image processing and/or machine learning, if there is
a fire. The two software sub-systems will communicate to know whether or not to send a
message.

Control: To process and control the data, the system will include a microcontroller and a
raspberry pi that work together to achieve the goals of the system. The microcontroller
will handle the wireless communication and joining and maintaining the network. The
Raspberry Pi will handle sensor data and determine if there is a need to send a message
across the network.

Communication: A mesh network will be adopted for the monitoring system to allow the
devices scattered in the forest to communicate dynamically and send data to be
processed at the central hub.

Power Supply: The system will be powered by solar panels mounted to the top of the
tree connected to the individual device. Since each device will draw modest current, the
solar system will be capable of supplying power and allowing the devices to function
autonomously without significant human intervention.

3

2.3. Requirements and Specifications

Table 1 and Table 2 below show the preliminary expected requirements and constraints
as determined by the project specification.

Table 1: Project Requirements

Table 2: Project Constraints

ID Category Requirement

C1 Electrical The system shall use solar power when available instead of
the battery

C2 Mechanical The system shall not be bigger than a bird’s nest. (15 x 15
x 15 cm)

C3 Mechanical The system shall be mounted to a tree

ID Category Requirement

R1 System The system shall detect the presence of a fire within 100m

R2 Electrical The system shall be able to draw power from a battery or
solar panel at any time

R3 Electrical The system shall charge a battery with solar panel

R4 Electrical The system battery shall last 36 hours without charging

R5 Electrical The system shall communicate wirelessly to nearby nodes

R6 Software The system shall differentiate other nodes and determine
how to send data to hub

R7 Software The system shall read all sensors periodically and store
data internally

R8 Software The system shall process all sensor data to determine if a
fire has started

R9 Electrical The system shall read voltages of the battery to determine
health

R10 Software The system shall report its own status/health to the hub.

R11 Software The system shall store configuration and user defined data
in non-volatile memory

R12 Mechanical The system shall withstand fires up to 4 hours

R13 Mechanical The system shall be able to withstand normal weather
conditions

R14 Electrical The system shall monitor environment with temperature
and humidity sensors

R15 System Average installation time should not exceed 30 minutes

R16 Mechanical The system shall be able to withstand normal weather
conditions

R17 Electrical The system shall verify environment with temperature and
humidity sensors

4

2.4. House of Quality

The house of quality is a product planning matrix that shows how customer requirements
relate to engineering requirements (ASQ, 2020). The House of Quality is mostly used to
identify the customer’s needs and improving the development engineers’ understanding
of the customer’s intentions. By creating an understanding between the customer and the
engineers who develop the product, the product is designed correctly and efficiently while
maintaining the original “market” requirements that got the project started in the first place.
Figure 1 below is our “House of Quality”.

Figure 1: House of Quality

Our House of Quality has four major relationships displayed. These four relationships are
the cornerstone to our design. The most obvious relationship is the connection between
the Cost of the product and the cost to design the product. If it costs us more money to
design the project, then it will cost more money for a consumer to buy it. The next
relationship is directly between reliability and cost. As the reliability increases, it stands to
reason that the cost will also increase. This may be due to purchasing better materials or
adding in additional components or modules to improve the reliability in the design. The

5

next relationship that matters greatly to the overall project is the inverse relationship of
battery life and power usage which is directly related to design time. If the time to design
this project is increased, it is likely that we will discover more efficient and better
techniques to save on power consumption. With lower power consumption we will
increase battery life. This relationship is important because it shows that with enough
time, we can make a very efficient product. Other relationships exist on the House of
Quality, but they are less “powerful” correlations than the four previously mentioned.

3. Design Constraints and Standards

Design Constraints and Standards are important to every project as they define how this
project relates to the world around it. When a project follows a standard, others can define
how the product behaves or is designed based on what kind of standard is followed.
Furthermore, a product might be approved or denied in certain markets based on which
standards it conforms to. Nonetheless, this section covers the constraints and standards
that this project is designed to.

3.1. Table of Standards

The table below shows standards that could be applicable to the project and what part of
the project would follow those standards. Regulations that could apply (i.e. from the FCC)
will also be listed in this table.

Table 3: Table of Standards and Regulations

Standard or Regulation Application Where it applies

RoHS – Directive
2002/95/EC

Restriction of using
hazardous materials

Entire Project

IEEE C2-2012 Safeguarding persons
from hazards during
installation

Entire Project –
Mechanical Housing

IPC-2220 (IPC-2221) Series of standards built
around IPC-2221. Related
to PCB design.

Electrical PCBs

IEEE 802.11ah Amendment to
IEEE802.11. Wi-Fi HaLow.

Research Considerations

47 CFR 18 and 47 CFR 15 Wireless communications
and ISM band

Using the 900MHz bands
for wireless
communications

6

IEEE 802.15.4 and .5 WPAN and Mesh
Networking standards +
Chirp Spread Spectrum

Research and Design
Considerations

UL 2054 Safety requirements and
tests for batteries

Batteries

3.2. Other Safety Concerns

The following section discusses what kind of safety concerns that we have when
designing the project. Our project uses electricity meaning that there is important
consideration that we should make in its design.

3.2.1. RoHS

Some materials are hazardous and harmful to the environment. To mitigate our effects
on the environment, this project will be RoHS compliant to the best of our ability. This
means that we will avoid components that contain lead, mercury, cadmium, hexavalent
chromium, polybrominated biphenyls, polybrominated diphenyl ethers, and some
phthalates (RoHS, 2005).

3.2.2. Battery Safety

Battery monitoring is an important aspect for this project as most battery types available
due to sizing constraints are prone to self-ignition which would ultimately defeat the
purpose of this project. How good would a fire detection system be if every so often the
systems caught fire. To alleviate this issue the state of the battery is constantly monitored
at every start of the detection system to make sure that the voltage and current are within
the specifications laid out by the manufacturer. To accomplish this task the MCU would
read the voltage and current across a resistor and compare it to a set of known values to
check if the battery is within its specifications. The state of the system will be converted
from analog to digital and transmitted if any anomalous behavior is detected at which time
the system can power down and wait for a technician to repair it.

Since Li-Ion batteries are being used in this project it was important to understand their
thermal limitations. Li-Ion has an issue with thermal runaway which is when a battery
reaches a certain temperature and crosses a threshold that will cause the battery to
rapidly rise in temperature. The battery will ultimately fail and catch fire and due to the
chemical makeup of the battery the fire cannot be extinguished easily and normally burns
until the fuel source, the chemicals and metals in the battery, burns out.

7

3.2.3. Electrical Safety

The system shall take advice from IEEE C2-2012 for Information Technology Safety and
will also follow guidelines of IPC-2220 Generic Standard on Printed Board Design (IPC-
2221, 1998; Electronic Code of Federal Regulations, 1996).

4. Research and Background Information

The following sections discuss our research into this project idea. The project itself
contains many different technologies and designs independently from each other. To
make sure everything works together, we need to research and fully understand each
part of the project before going into detail and designing the final system.

4.1. Current Fire Detection Systems

The first step is to look into current fire detection systems. These systems are based on
a variety of technologies. Some of these technologies will be used by us as well but some
will be skipped over if they are not pertinent to our design goals. The following subsections
discuss the products used in the industry today or that have been designed before as well
as similar projects using an Arduino. Each of these projects have different costs and
requirements associated. By understanding what sets these systems apart from each
other, good designs can be created that meet our needs.

4.1.1. Products Used in the Industry

Current forest fire detection and monitoring systems use video cameras to recognize
smoke spectrum, thermal cameras to detect heat glow, IR spectrometers, and LIDAR
(detection of light and range) to detect smoke particles using reflected laser (Nörthemann,
Bienge, Müller, & Moritz, 2013). These systems are costly due to the nature of the
technology. Our objective is to design a system that can accomplish its goal while driving
cost down significantly through careful electronic design and component selection.

The following forest fire detection and monitoring systems exist in the market
(Nörthemann, Bienge, Müller, & Moritz, 2013):

1. AlarmEYE:

a. Video and infrared system using black and white color frequency.
2. EYEfi SPARC:

a. Optical sensors that includes camera, light sensors, communication, weather,
power system, option for tilt zoom camera.

b. Does not include smoke detection
3. UraFire:

a. Smoke detection system focused on “clustering motions and a time input”
4. Forest Fire Finder:

8

a. Analyzes how atmosphere absorbs light and differentiates absorption behavior
b. Can detect smoke in a range of 15km

5. ForestWatch:
a. Sensor camera mounted on a tower using a using a 360° pan tilt camera that scans

the forest in a range of 16-20km for smoke in the daytime and flame at night.
6. FireWatch:

a. Optical sensor system that scans the forest using a 360° camera with a central
office for monitoring and data processing.

7. FireHawk:
a. Cameras stationed strategically in the forest, the system uses GIS mapping and

ForestWatch software to calculate the shortest distance to the fire.

4.1.2. Similar Project

The Arduino fire alarm system using temperature and smoke sensor with Android
connectivity is a product that exits in the market for $5,900 USD and serves a similar
purpose to the final product we aim to design (Arduino fire alarm system using
temperature and smoke sensor with Android connectivity, n.d.).

A major drawback of this kit is the high market value price despite the product using

straightforward components. This price can be attributed to the fire-proof enclosure, which
typically raises the cost of the system. Moreover, the product uses Bluetooth technology
to communicate an alert through a mobile app. Bluetooth technology can range from 30m
to 100m, which could function in an indoor environment but is not ideal for an outdoor

Figure 2: Arduino Uno being used in a similar project (Arduino fire alarm system using temperature
and smoke sensor with Android connectivity, n.d.)

9

environment that is intended (Bluetooth, 2020). Moreover, it is not clear if this product will
communicate with other fire systems around it, such as in a mesh network.

However, this product contains many of the features intended to use for this project and
the strategic placement of parts will be useful when designing the printed circuit board for
this project. The temperature sensor, smoke sensor, and microcontroller are components
that would be implemented in this project. Thus, our project would achieve a similar
objective to the Arduino system; however, most importantly the cost will be significantly
lower with wider range and similar fire detection technologies.

4.2. Background Research

After looking at systems that already exist to detect fires, we need to investigate other
kinds of technologies that the project will use. Without an understanding of these
individual parts, the system will not function properly. In this section, a narrower view is
taken such that individual components, sensors, and protocols are examined for their
efficacy in the project.

4.2.1. Serial Communication Protocols

Serial communication is dependent on the type of microcontroller used and the
communication protocol of the chosen sensors. Based on the research, the likely
protocols to be used for this project will be SPI or I2C.

SPI or Serial Peripheral Interface requires a 4-wire connection: a clock signal (SCLK), a
slave select signal (SSn), Master Out Slave In (MOSI), Master In Slave Out (MISO)
(Leens, 2009). SPI uses a protocol where a single device sends the communication to
the slave devices, thus it uses the single-master communication protocol (Leens, 2009).
In order for communication to occur, the master and slave must use SCLK frequency,
CPOL, and CPHA (Leens, 2009). In the event when multiple slaves exist, the master will
reconfigure itself each time to initiate the communication with each slave (Leens, 2009).
SPI does not have a maximum data rate, nor does it use a specific addressing structure.
In addition, SPI does not have a system to acknowledge that the device received data or
options to control the flow of data (Leens, 2009). Therefore, if SPI is used in command
type applications, an additional structure would need to be incorporated.

The physical interface of SPI is flexible in the sense that many variants currently use a
continuous clock signal and random lengths compared to past types that were non-
continuous clocks and used a single byte scheme.

10

Figure 3: SPI Topology (Leens, 2009)

I2C or Inter-integrated circuit is known for requiring a 2-wire connection between the
peripherals and the microcontroller (Leens, 2009). The two signals are called serial data
(SDA) and serial clock (SCL) (Leens, 2009). I2C allows multiple slaves and masters to
be connected and communicate (bi-directionally) between the two lines using a protocol
that includes 7-bit slave addresses and data divided into 8-bit bytes (Leens, 2009). The
bus master is the IC that initiates the data transfer, while the remaining IC are considered
bus slaves (Leens, 2009). The data rate should be between 100kb/s, 400kb/s and 3.4
Mb/s for standard mode, fast mode, and high-speed mode, respectively (Leens, 2009).
There some variants of I2C that include a low speed mode at 1kb/s and fast mode + at
1Mb/s (Leens, 2009).

Figure 4: I2C Topology

11

The physical interface of I2C is compose d of SCL and SDA lines as open drain I/Os with
pull-up resistors; while grounded it is a logic zero and while released is a logic one (Leens,
2009). Due to the physical structure of I2C, communication can occur without conflict
even if multiple two devices are continuously sending information on the SDA and SCL
lines; there is no electrical interruption due to the open-drain and pull-up setup. This is
illustrated in Figure 5 (Leens, 2009).

Figure 5: Timing Diagram of I2C (Leens, 2009)

I2C has several advantages over SPI. Firstly, since I2C only uses 2-line connections, this
allows easier implementation since less pins are required. Moreover, I2C allows for
smooth communication with is advance feature of resolving multi-master communication
conflicts on a simple physical structure (Leens, 2009). I2C’s setbacks in comparison with
SPI is with data rate; SPI is a full-duplex which means simultaneous communication is
possible. Moreover, SPI does not define a speed limit for transmitting data (Leens, 2009).

After examining both protocols, I2C would be the ideal communication protocol between
the microcontroller and the sensors; however, SPI is not completely ruled out. The
advantages I2C provides helps achieve the purpose of the project in a straightforward
manner. The drawbacks will be considered during implementation but do not pose a risk
for the project.

4.2.2. Sensors
4.2.2.1. Gas Sensors

When reviewing gas sensor types, the important parameters to consider are sensitivity
and selectivity. Additional parameters to consider are response time, stability,
reversibility, energy consumption, fabrication cost, and adsorptive capacity according to
IEEE fellow researchers investigating fire sensing technologies (Gaur, et al., 2019). Gas
sensors detect gases by observing for variation in the sensor output, which typically is an
analog value; however, some gas sensors send a digital signal out.

12

Table 4: Gas Measurements in the Atmosphere During a Fire (Fonollosa, Solorzano, & Marco, 2018)

Sensors vary by the material used; existing materials in the market include
semiconductor, catalytic bead, photoionization, infrared, and electrochemical. Additional
gas sensor types include optical, acoustic, gas chromatograph, and calorimetric (Gaur,
et al., 2019).

In the event of a fire, the air quality changes; the severity depends on the severity of the
fire and the environmental conditions. Forest fires tend to release high levels of N2, O2,

CO, CO2, H2O gasses (Gaur, et al., 2019). Changes in oxygen levels can provide indication
of the type of fire. A low change in concentration suggests a smoldering fire while large
changes suggest liquid fuel fires that rapidly burning fires (Gaur, et al., 2019).

Gas sensors made with semiconductor metal oxide are an ideal choice of materials
however they come with disadvantages namely with stability issues that lead to false
alarms (Gaur, et al., 2019). However, despite this issue, zeolites have been used instead
of metal oxides to compensate for this issue (Gaur, et al., 2019). Moreover, gas sensors
that use polymers have shown to enhance sensitivity (Gaur, et al., 2019).

Based on spectroscopy laws gas sensors that use optical methods are more stable,
sensitive, possess better selectivity, and have a low response time (Gaur, et al., 2019).
However, optical gas sensors come with the disadvantage of higher costs (Gaur, et al.,
2019).

13

A novel method of gas detection uses acoustic waves by detecting the change in velocity
of the wave due to adjusting a parameter of the sensor’s material, for example the mass
(Gaur, et al., 2019). A laser beam is shined through the gas. The gas molecules absorb
the beam and releases the beam’s energy resulting in an acoustic wave which is detected
using an acoustic sensor. The magnitude of the wave is used to identify the concentration
of the gas in the atmosphere. The figure below provides a depiction of how this is

achieved.
Figure 6: Acoustic gas detection method (Gaur, et al., 2019)

Other methods of gas detection use a combination of sensors to detect temperature and
humidity and an algorithm to detect gases such as CO and CO2 (Gaur, et al., 2019).
These gas sensors use metal oxide or n-LTPS MOS Schottky diode on a glass substrate
(Gaur, et al., 2019). SnO2 provides the highest quality in terms of sensitivity ratio; this
was used for gas sensor to detect gasses emitted during fires by detecting the smells
from cotton and the printed circuit board when it is heated at 200 degree Celsius (Gaur,
et al., 2019). This is achieved by measuring the change in resistance of the parts due to
gas emission.

4.2.2.2. Smoke Sensors

Understanding smoke characteristics and causes helps understand how smoke sensors
function in order to choose an appropriate smoke sensor for forest fire applications.
Smoke is produced when a fire is burning and materials are combusted; it is composed
of airborne solid, liquid particulates, and gases, which deems it an unwanted element in
the atmosphere since it reduces the air quality in the environment.

Smoke detection uses two techniques to detect its presence: non-visual and visual (Gaur,
et al., 2019). In a non-visual method, the detection technique looks smoke combustion

14

conditions such as pyrolysis, smoldering, and flaming; these conditions are contingent on
the type of fire and the environmental surrounding (Gaur, et al., 2019).

Smoke detection methods that use the photoelectric principle are primarily used for
smoldering conditions and is effective in doing so; response times are quick (Gaur, et al.,
2019). In this method, the ionization smoke sensor measures smoke relative to the
ionization levels in the air (Gaur, et al., 2019). A potential difference is applied through a
chamber and the output current is measured as a result (Gaur, et al., 2019). Moreover,
photoelectric method dictates that the concentration of smoke in the air will proportionally
increase the light scattering capacity (Gaur, et al., 2019). Thus, this method measures
the variation in light scattered using optical science and technology to detect the smoke
levels in each area. It is also common to combine this method with gas sensing
technology for better results.

Other smoke detectors use alpha particles to the gate of a MOSFET which induces a
positive charge (Gaur, et al., 2019). When the smoke concentrations are high, smoke
particles decrease the number of alpha particles in the gate terminal which then reduces
the current (Gaur, et al., 2019). Other photoelectrical methods investigated the range of
transmission for wood smoke using a white polychromatic LED, an optical fiber, pyrex
glass window, and photodiodes (Gaur, et al., 2019). This could be implemented in a forest
environment. The figure below provides a visual of how photoelectrical smoke sensors
works.

Figure 7: Visual representation of photoelectric smoke detection (Gaur, et al., 2019)

Visual techniques mostly use cameras which can detect both flame and smoke (Gaur, et
al., 2019). The nature of smoke is that it exists at the beginning of the fire which is crucial
when designing fire-detection strategies. Smoke detection uses color space, specifically
RGB or YUV. With RGB, pixel rules must be used; however, with YUV, the rules are

15

dictated by looking at chrominance and luminance values (Gaur, et al., 2019). To
overcome false alarms, luminance mapping is used paired with support vector machines
(SVM) algorithm, and Bayesian network algorithm. Other techniques to detect smoke use
Adaboost with staircase searching (Gaur, et al., 2019).

Yet, detecting smoke at the early stage can be difficult when comparing it flame detection;
it is very common for smoke and flame characteristics to be used when creating
algorithms. However, smoke direction can be detected using cameras and various
algorithms.

4.2.2.3. Flame Sensors

In order to understand flame detection to choose a suitable sensor, it is important to
understand the nature and characteristics of a flame. Flame is a visible exothermic
reaction that occurs in a fire due to fuel and oxidants interacting, thus flames emit radiation
and chromatic properties. Flame temperature is dependent on the material that is burning.

There are two methods of flame detection: non-visual and visual flame techniques (Gaur,
et al., 2019). Non-visual flame sensors use ultra-violet, visible, and infrared rays (Gaur,
et al., 2019). This is because flames emit a radiation whose intensity is determined by the
flame temperature and the type of fuel burning (Gaur, et al., 2019). An ultra-violet sensor
is used to measure the brightness since UV sensors are not impacted by interreferences
from other radiations such as infrared (Gaur, et al., 2019). Additionally, infrared and visible
light sensors are used to measure flame. However, IR and visible light sensors are more
effective than ultra-violet sensors (Gaur, et al., 2019). UV sensors tend give out more
false positive alerts due UV sensors emitting sparks of UV spectra that essential interferes
with the signal (Gaur, et al., 2019). To overcome this effect, a near infrared photodetector
(NIR) can be used for flame detection. NIRs are made of Pb semiconductor using
Colloidal Quantum Dots (CQD) technique (Gaur, et al., 2019).

Visual techniques for detecting flame can be difficult because standard heat, smoke
flame, and gas sensors is the delay in receiving a response (Gaur, et al., 2019). This is
because the particles must reach the sensors in order for the sensor to trigger a response
signal (Gaur, et al., 2019). Moreover, the range of detection tends to have a small radius.
As a result, this issue is typically resolved by installing many sensors to cover a large
area (Gaur, et al., 2019). Moreover, the nature of fires come with various characteristics
such as shape, size, color, location, growth, degree of burning, and dynamic texture and
typical sensors are not capable of measuring each of these characteristics and their
parameters accurately (Gaur, et al., 2019). Thus, flame sensors that depend on these
techniques give false alarms whose validity can only be evaluated by an experienced
individual.

A device to solve this issue is using a camera that can capture images of fire and analyze
them accordingly to establish fire detection. Such cameras tend to be very high cost; thus,
it is more common to see surveillance cameras being used instead. IR cameras have

16

been used for flame detection by using the Markov model to detect flame flicker (Gaur, et
al., 2019). The figure below is a flow chart that explains how this works.

Once a camera records data and provides it in the RAW, RGB, YUV, JPEG formats,
algorithms can be used to examine the images and deduce if the image frame has the
visual characteristics of a fire or not. There are two main methods of designing the
algorithm. The first approach analyzes characteristics such as color, shape, flickering
frequency, and dynamic texture of the fire (Gaur, et al., 2019). This requires the use of
color spaces; YCbCr color space showed to be the most effective for flame detection
(Gaur, et al., 2019). Other color spaces that can also been used are RGB, CIE L∗a∗b∗,
YUV, or HIS (Gaur, et al., 2019).

Figure 8: Hidden Markov model used to detect flame flicker (Liqiang Wang, 2011)

17

Color information is not enough to provide accurate results (Gaur, et al., 2019). Movement
of fire has also been examined for fire detection techniques by using background
subtraction method, temporal differencing, and optical flow analysis (Gaur, et al., 2019).
The Markov model can be used to detect flame movement for object that have flame-like
colors as well as flame boundaries using temporal wavelet analysis (Gaur, et al., 2019).
Moreover, a moving camera can be used to observe moving flame pixels without using
background subtraction (Gaur, et al., 2019). This can be paired with detecting color,
temporal, and spatial information in each spatiotemporal area. However, this method can
slow the fire-detecting process since the range is weak. Another method utilized the Wald-
Wolfwitz algorithm for flame detection looking a parameter such as color and predictive
motion movement (Gaur, et al., 2019). The reliability of the results was increased using a
“convolution operation” (Gaur, et al., 2019).

Figure 9: Convolution neural networks approach layers (Gaur, et al., 2019)

The second approach of designing the fire detection algorithm utilizes a learning-based
approach (Gaur, et al., 2019). In this method, the system is provided a dataset of fire and
non-fire images and is “trained” to make an appropriate judgement by analyzing for
specific fire features. Convolution neural networks approach is a common approach that
achieves this, as well as You Only Look Once (YOLO), and is discussed later in the paper.
The figure below provides a visual of the layers involved

18

.
Figure 10: Example of the Wald-Wolfwitz randomness test being used for flame detection

4.2.3. Fire Resistant Enclosure Materials

There are a multitude of fire resistive materials to choose from but what is need for this
project is something that is light and offers the most fire resistance possible while not
being excessively expensive. For the purpose of this project the enclosure that will be
used for each prototype will not be fire resistant. This is done to minimize the cost and
manufacturing process for senior design two. If this project was to be mass produced,
then a fire protective encloser would be utilized to protect the devices in case the fire it
has warned about has climbed up to wherever the device is located.

A few choice materials have been selected for their fire resistive properties and their ease
of implementation into a manufacturing process. The first material is Kevlar; Kevlar is a
synthetic material developed by DuPont and is extremely shock resistant and fire resistant
(ScienceDirect). It is not very abrasion resistant but that will not be an issue as the Kevlar
would be manufactured into a composite material consisting of a resin and the Kevlar

19

woven cloth. The issue with making an enclosure this way is the fire resistance is now
going to be limited to the resin is used to cast the composite into shape using a mold. The
Kevlar itself has some draw backs, it is very expensive and being a synthetic fiber, it can
cause some medical issues if the individual fibers are inhaled (ScienceDirect).

Figure 11: Synthetic Fiber Kevlar (Jamestown Distributors)

Another choice material is carbon fiber weave. Carbon itself is very fire resistive and in
its pure form is used for nearly all castings for materials that need to be heated to
extremely high temperatures, temperatures way hotter than a normal wood fire could ever
reach. It has the same drawbacks as Kevlar when it comes to cost and handling of the
raw material. The carbon fiber weave would also need to be made into a composite with
a high temperature resin which would limit the fire resistance to according to the resin is
limited to.

The easiest material for manufacturing would be plastic. Most plastics are not fire
resistant at all. They have many failure modes from melting to ignition. For this project we
would want a plastic compound that does neither. Luckily there are plastics that only burn
up and off gas when they do so, but they do not ignite or melt. These plastics could have
additives put in them to increase their fire resistance; an example is any compound that
is a brominated flame retardant (BRF). These compounds burn up in the fire creating a
sort of sublimating coating around the plastic which the fire has to get through first to burn
the plastic.

20

Figure 12: Carbon Fiber Weave (WallpaperAccess)

4.2.4. Battery Charging and Battery Chemistries

The battery for the project must be able to last throughout the night and when the solar
radiation is low on average for the winter months it must be able to handle not being at
full capacity during the day. There are many battery chemistries to choose from with a
few types of batteries not being viable at all for the system. Lead acid and absorbent glass
mat car or RV style batteries couldn’t be used due to sizing and weight.
Lighter smaller batteries were the only batteries available to be used so a NiCad or Li-Ion
battery style would have to be used. For this project the best option to go with would be
to choose a battery within budget that is the most power dense and the chemical makeup
of said battery allows for the most charge cycles.

Figure 13: Maximum Charge/Discharge Cycles Versus Battery Type (Tan, 2019)

21

Researching different types of batteries lead to an issue arising between them. The max
depth of discharge had to be accounted for along with how many charge cycles the
batteries could handle. NiCad, or nickel cadmium batteries, were a cheaper option for the
project but the weight and size made them a bad option. Nickel-metal hydride batteries
come at a high price and lithium ion batteries along with lithium polymer batteries have
the same level of charge cycles so it would make sense to go with which ever one was
the cheaper option. The best option at first seemed to be lithium iron phosphate, or
LiFeP4, but this one is the most expensive out of all the options but did allow for the most
charge cycles out of them all. For a final product it may be a better option to go with this
battery but for the sake of cost, weight, and size Li-Ion batteries seemed like the best
option for the prototype system.

Figure 14: Self-Discharge Rates of Batteries (Tan, 2019)

To further cause issues in choosing a battery for the project the self-discharge rate was
a factor to deal with. Self-discharge is when a battery will slowly lose charge over time
when not in use. Since the solar panels were going to charge the batteries every day the
discharge rate wasn’t a massive impact but the battery that was chosen needed to be at
least able to handle a few days of not being charged and remain in stand by for when the
weather blocks out the sun for a while like in the case of a thunderstorm or hurricane. The
only battery that could be ruled out this way was NiMH as it had the highest self-discharge
rate of all the batteries being looked at.

4.2.4.1. Effect of Temperature on Batteries

For this project, the batteries are going to experience high ambient temperature in the
summertime and most likely very low wintertime temperature due to being placed in
higher locations out in the open. These conditions change how a batteries chemistry
works and will change the overall life and performance of the battery. Wintertime
temperatures shorten the charge life of a battery by slowing down the chemical reaction

22

happening in the cell when power is being drawn from it. When in standby and not being
used cold temperatures will increase the self-discharge rate of the cells which is only
worsened by the fact that wintertime conditions lessen the output of a solar array because
the solar radiation isn’t as condensed as in the summertime. This will cause the overall
max amp to draw to be less as well and could cause total system failure due to over
drawing the battery.

The figure bellow is a graph that highlights what happens to the battery maximum charge
storage capacity if the temperature is increased like in summertime conditions. As shown
the max storage of the battery is not affected until the natural battery charge cycle lifespan
starts to end. The high temperatures only increase the damage done by having a battery
go through many charge cycles with the peak temp of 55C having the most affect it can
be postulated that further increase would cause even more damage but seeing how 55C
is 131F it is unlikely ambient temperatures will exceed this unless the device is currently
engulfed in a fire.

Figure 15: Temperature Vs Charge (Leng, Tan, & Pecht, 2015)

The other figure, shown below, is a graph that shows how an increase in temperature on
a battery will lower the max amp output of a battery. RnCw is the current flowing across a
resistor and capacitor in parallel and demonstrates how the battery has an exponential
threshold at 45C and any increase beyond this will drastically decrease the max amp
draw of a battery. This could cause the same issue as the wintertime conditions in where
a total system failure is cause due to pulling to many amps from the batteries.

23

Figure 16: Temperature Vs Time (cycles) (Leng, Tan, & Pecht, 2015)

All this means the system needed to be designed to be able to handle the drastic
temperature differences seasonal changes brings which was accounted for by doubling
the power supply system. The number of battery cells was doubled along with the solar
array. This safety factor of two will provide a hefty cushion of protection any temperature
change might cause on the system by having the system draw minimum power in the
most optimal conditions.

4.2.5. Li-Ion for System Power

The final decision to use li-ion batteries for this system was made on multiple decisions.
The major decision this battery was chosen for this project was cost and availability. Li-
ion is the most used battery in technology right now.
This means that near and size and configuration for the battery can be found and sourced
for the constraints in the project. Many of the students working on this system had the
standard 18650 sized li-ion cell battery to use for any testing of the system so it made the
most sense to go with this battery chemistry for the system.

24

A few smaller reasons is the way li-ions operate such as how the power output doesn’t
drop as the battery is depleted or how the batteries come with safety built in to prevent
over charging, or overvolting, the battery which is good for preventing the system from
causing a fire. The chemical make-up of the battery also allows for a minimum for 70 full
charge cycles. That means the batteries can be fully discharged and then recharged to
full 70 times before the battery health starts to deteriorate. This doesn’t prevent the battery
from operating anymore it only causes the battery to discharge faster than when it was
new.

4.2.6. Power Supply Topology

The power supply for this system is a solar array that is 12 volts nominally and is hooked
up to a voltage regulator that converts that 12 volts into 5 volts with a mix current draw of
2 amps. This is then hooked up to a lithium battery charging IC. The battery and solar
panels are then hooked to a buck-boost converted that maintains 3.3-volt and 5-volt rails
for the Pi and sensors for the system. This power system must be able to utilize the solar
cells and battery at the same time as to not put undue stress on the battery and cause
constant charging to occur.

To ensure that the system operates at the proper voltages, we must employ some kind
of DC to DC power converter. In the case of our solar panel, we must ensure that at all
times it outputs an acceptable voltage for charging to our charging IC, but at the same
time allows for the proper voltages to be fed into the system during normal usage. This
will require step down converters.

4.2.3.1 Linear vs Switching Regulators

There are two common types of power converters: Linear and Switching. Linear
regulators are the simplest form of regulator as they directly convert power in to power
out. That is, there is no complex operation internal to the regulator. This simple
conversion, however, comes at a price. Linear regulators dissipate a lot of heat when
used and are generally inefficient. As a result, a linear regulator will require a heat sink if
a lot of power is expected to be converted to heat. This will add weight and cost to the
design. Luckily, a linear regulator is generally cheaper and has less components to
support it than a switching regulator. A downside to using linear regulators is that they
must always step-down voltage. There is not a way to step up the voltage through a linear
regulator. Switching regulators provide many different topologies that can, in some cases,
raise the voltage.
It is even possible to design a switching regulator that can lower or raise the input voltage
if it is unstable and is sometimes higher or lower than the desired voltage. This does not
mean that linear regulators don’t have their use. Linear regulators are great when there
is a decent amount of power coming in and lower power draw on the other side. An
advantage to using them is when there is a small difference in voltage going in and voltage
coming out. If the desired voltage is just slightly lower than the input voltage, then the
efficiency can be greater than 97%, but only in this case. Usually, it is lower. Considering
our design with batteries: two batteries in series will generate around 8V. If we use a

25

linear regulator to step down to 5V or 3.3V, there is a significant (greater than a volt)
decrease in voltage. I can be expected, in this case, that the linear regulator will be much
less efficient than a switching regulator. Since our design is purely powered from a solar
panel and a battery, we must make sure that we are efficiently transferring power between
different parts of the circuit and not wasting any power in heat dissipation.

Switching regulators, on the other hand, are the more likely solution that we will implement
in the final design. Compared to linear regulators, they are more expensive and require
more support circuitry causing them to be a bit more complex than a linear regulator. The
benefit is in efficiency. With a circuit designed properly, the power coming in can be
efficiently converted to the proper power going out. Sometimes even greater than 99%!
Since we are charging the battery and running the circuit off of the solar panel, we will
need to efficiently step down the voltage from the panel to the battery charge voltage, and
then from the battery voltage to the circuit voltage. This means we will need 2 to 3
switching regulators in our final design. The high efficiency implies that there is very little
heat dissipation. This is good, as our ambient temperature is going to be higher (or lower
in some cases!) than room temperature. The device is designed to operate outside. In
turn, we don’t want the device to have too much affect on the heat around it such that it
does not exceed specific component heating constraints. Since the switching regulator
has more components to support it, it will take up more board space. This is a price that
must be paid for the efficiency boost. In the end, the board space is not critical if designed
appropriately. Since our project does not have any externally imposed sizing constraints,
we can move forward with switching regulators.

4.2.3.2 Buck and Boost Converter

While discussing switching regulators, it is good to have a general idea on how the major
topologies of different switching regulator designs operate. In our design, we do not
expect to be raising voltages. Therefore, we need to step-down a voltage. This kind of
converter is known as a Buck Converter. They are configured only to step-down DC
voltages. Buck converters store energy in a passive component, usually an inductor, and
uses that stored energy to output a specific value. To store the energy, a pulse width
modulator can be used to charge and discharge the passive component as necessary.
The duty cycle of this pulse determines the voltage that is output since the passive
component must be discharging to provide current. While charging, the passive
component is usually supported by a capacitor on the output end of the regulator. The
passive component is in series with the load, causing a voltage drop due to the impedance
of the device and the time that can charge the passive device. Even though the voltage
is lower, the charging/discharging of the device still keeps the average power equivalent
(or nearly so) while in operation.

In juxtaposition to a Buck Converter, a Boost Converter is designed to increase voltages.
This step-up behavior works in the same way as the Buck Converter: A transistor works
as a switch and at the right switching frequency it charges and discharges a passive
component, usually an inductor. Since current cannot change instantaneously across an
inductor, when the switch is open, the energy stored in the inductor elevates the voltage

26

level above the input of the storage component to keep power consistent on each leg of
the power network. This action compensates for the lower voltage on the other side at the
cost of lower currents on the high side. The load now sees a higher voltage than the input
source has.

In both designs, heavy filtering may be necessary for sensitive components to avoid
issues with the switching action. This “On-Off” methodology introduces noise into the
power system which can be detrimental to digital logic devices (like microcontrollers,
processors, or DSP devices). In many cases, a switching regulator will feature strong
capacitors in the input and output stage to help compensate for the noise and filter it out.

4.2.7. Solar Array Design

Assuming a 12v system that draws an average of 100mA, we determined the needs of
the system to be almost 29Wh per day. For 5 hours of maximum power output with an
MPPT we need 5.76W so a 500mA MPPT would be needed. The MPPT would have to
be a custom made one as the ones available for purchase are over specifications and
wouldn’t be able to handle the low amount of power flowing through them efficiently.

To make sure the system could handle any solar radiation issues that could arise for a
few reasons such as weather or the panels getting dirty the entire system had a safety
factor of two applied. The needed array and battery size were doubled to account for
unforeseen issues. This didn’t affect the cost to greatly as finding solar panels in the sizes
needed was difficult and had a price gouge on them for being so small. Cheaper panels
that were larger and more powerful were cheaper so the system being doubled was the
best option.

4.2.7.1. Azimuth and Elevation/Tilt Angle

To properly arrange a solar array to absorb the most solar radiation as possible it needs
to have the proper azimuth and inclination angle for the location it is being used at.
Azimuth is the direction the panels are pointed, measured in degrees with 0 degrees
being south and north being 180 degrees, and inclination is how far a panel is tilted up.
The change is performance of the system if not properly set up is drastic and the location
of the solar panels changes both these parameters which can make it difficult to calculate
the proper setup. If the location is west of the Mississippi river then magnetic declination
needs to be considered for the azimuth angle.

For panels in the Northern hemisphere if the magnetic declination is positive, or east, the
panels need to be rotated eastward at the angle of magnetic declination that accounts for
the change in the Earth’s magnetic field lines. If it is negative, or west, the panels need to
be rotated westward to account for the declination. This must be done because the earth’s
magnetic field is not constant with what true north or true south is. A compass has slight
errors in it due to magnetic declination and must be taken into account when setting up a
panel as all calculations are based off true north.

27

Setting the tilt of a panel is simple if the panel is to be ridged mounted and not to be
moved. The tilt angle is simply equal to what the latitude is in the location the panels are
being set up. Depending on the location though the panels might need to be tilted plus or
minus a few degrees to optimize them for certain seasons. If the system produces more
power than it consumes in the summer than the system may struggle in the winter and if
this is the case then the tilt should be angled up, plus, about 10 to 15 degrees to account
for low winter production. This will affect the summertime production of the panels but for
this system the summertime solar energy production will be more than what is needed
and the locations in which the system might be placed is expected to have harsh winters.

Figure 17: Azimuth and Elevation

A small note on solar tracking systems and their value to this project. While solar tracking
technology does exist and could be designed and manufactured into this system it adds
significant complexity and design, along with weight. Solar tracking systems cost between
$600 to $1000 per panel depending on size and, at best, increase production by about
20%. For our project, the cost and added complexity means that they will not be used.

28

4.2.8. RF Design and Frequency Selection

To work effectively over a large area, the system needs to be able to wirelessly transmit
data. Different antenna designs and frequencies play a role in designing the circuits and
choosing the components that will work with wireless technologies. This section
investigates the different issues with RF design and some decision-making processes
that took place to choose frequencies and other design elements.

4.2.8.1. RF Considerations

RF and wireless applications require that some specific design rules be followed. If these
rules are not taken into consideration, then significant power and range issues may
present themselves. At low power levels, avoiding signal loss is very important. Any piece
of wire can be considered an antenna. How well that wire radiates energy is dependent
on the wire being resonant at the same frequency as the signal applied and that the feed
point of the antenna is matched to the impedance of the attached transmitter. Direction
and range are then determined by the design and shape of the antenna. It is possible that
the radiated energy be aimed at a single point or that it radiates out in a sphere or
doughnut shape.

The antenna must be the correct length at the frequency of operation, and it must have
its impedance matched by the transmitter or receiver to operate correctly. Impedance
matching maximizes the power transfer from the transmitter or receiver to the antenna.

4.2.8.2. Frequency Selection

The main discussion of Radio Frequency technologies comes down to range. Ideally, we
use the IEEE 802.1 Wi-Fi scheme. This however has limited range. These numbers are
averages. Actual distances depend on a variety of variables.The following numbers were
compared to get the maximum range out of our device.

Table 5: Comparison Between Technology Ranges and Frequencies

Technology Frequency Range

Bluetooth 2.45 GHz 30 Feet

Wifi 2.45 GHz (or 5GHz) 100 Feet

Zigbee 2.4 GHz 1000 Feet

FSK Modulation @ 900MHz 900 MHz 2+ Miles

LoRa 400 MHz / 900 MHz 10 Miles

Furthermore, we can use the Free-Space Path Loss equation to determine the
attenuation of radio energy between two antennas.

29

𝐹𝑆𝑃𝐿 = (
4𝜋𝑑𝑓

𝑐
)

2

where d is the distance between antennas, f is the frequency, and c is the speed of light.

Assuming trying different ranges, we can generate a graph that shows the best option for
longer ranges and frequencies to minimize attenuation.

Finally, due to regulations of how much power can be dissipated in the 400MHz bands,
900MHz is a good solution for global use and higher power dissipation.

Figure 18: Signal Attenuation Vs Distance of Different Frequencies

4.2.8.3. Antenna Design
Antenna design plays a big role in RF applications. Without a proper antenna design the
range and sensitivity of the device will be severely impacted. This section outlines some
research in antenna design and considerations.
Whip Antennas
These kinds of antennas are designed for machine-to-machine communication but are
not used in portable designs much anymore.[45] They are externally mounted, so they do
not suffer interference issues from a PCB as much as other designs and they are not
easy to detune. They are very useful for certain applications that could benefit from an
external antenna.

0

20

40

60

80

100

120

140

1 2 3 4 5 6 7 8 9

A
tt

en
u

at
io

n
 (

d
B

)

km

Signal Attenuation vs
Distance of Different Frequencies

400MHz

900MHz

2.4GHz

5GHz

30

Helical Antennas
These kinds of antennas are similar to whip antennas but instead of being a strand of
wire externally mounted, they are copper that’s wound in a helix shape. Since the
frequency band is selected by the length of the antenna (among other factors), the
antenna can take up less space since more of the copper takes up less area being wound
in a loop. Due to their size and mounting style, they are fairly rugged[45] which means they
can be put inside the mechanical housing of the device and can be hidden from view.

Chip Antennas
Chip antennas (Usually made from ceramic) are small and easy to put into a design. They
have several advantages compared to larger antennas. They are not as sensitive to
proximity interference and from other components. Furthermore, they are easier to
accommodate without simulation.[46] A downside as these are more expensive than a
trace PCB but they are generally cheaper than other alternatives.

Trace Antennas
Trace antennas seem to be the cheapest but most difficult antenna to design. They are
basically free as they are included in the cost of manufacturing the PCB. This means that,
if designed correctly, the antenna is free! Furthermore, they are more tamper proof since
it is embedded into the PCB. When tuned correctly they can operate in a wide bandwidth
and have a good amount of network reliability [46]

. A downside to these kinds of antennas
are that they cannot be modified after manufacturing. Any changes to the antenna require
redoing the board layout and having new boards manufactured again.

4.3. Component Research

An even narrower view than before is the selection of individual components. In the
following subsections, different components are compared to see if they make a good fit
for the system. These components, and their selection, will take parts of the previous,
higher level, sections and focus on individual aspects that set the components apart from
the others and lend themselves to a good design.

4.3.1. Controller Selection

The fire detection system operates in two parts: Process the sensor data and process the
network data. Since these devices are wireless and need to be put out over a wide area,
we need controllers that can support wireless communication and also process the sensor
data. Some options, initially investigated, were the MSP430 family, ATMega family, and
Espressif ESP32 controllers as they are popular options for controllers and have a wide
variety of resources. As discussed in the following section about Radio Frequency
communication Technologies, we settled on the LoRa modulation standard as the
physical layer for communication. Because of this, the MSP430 and ATMega
microcontrollers fell out of favor since they do not inherently handle RF communications.
They would have to be interfaced with another circuit to implement the RF design and
that would increase cost and complexity. To remove this complexity, the SAM R35 was

31

chosen. It contains a LoRa and FSK modulator/demodulator built into the chip. Combined
with its low power usage and high RAM options, it is a good choice.

Microcontroller Comparison Table
Note: All values are shown at their highest possible offering if multiple values are given.
Table 6: Comparison of Microcontrollers

Controller RAM Flash Avg Power (mA)
(Tx/Rx/Run/Sleep
)

Slee
p
mode

Wireless
integratio
n

Required
Peripheral
s

MSP430 66KB 512K
B

-/-/2.36/.00045 Yes No Yes

ATMEGA480
8

48KB 6KB -/-/11/.0001 Yes No Yes

ESP32 520K
B

4-
16MB

240/100/30/.005 Yes Yes Yes

SAMR3x 32KB 256K
B

95/16/4.5/.0008 Yes Yes Yes

Finally, the matter of sensor reading, machine learning, and image processing was
discussed. To handle this simply and quickly, the Raspberry Pi Zero was chosen since it
can run Python code (making the software easier to write and maintain) and it has a
relatively low power consumption: 100mA. To handle this simply and quickly, the
Raspberry Pi Zero was chosen since it can run Python code (making the software easier
to write and maintain) and it has a relatively low power consumption when idling: 100mA.

4.3.2. Radio Frequency Communication Technology

Since the 900MHz band was chosen as our frequency of choice, there are only a few
simple to integrate solutions on the market. IEEE 802.11ah would be ideal, however it is
not quite ready for the industry just yet.

This leaves only a few viable options like XBee and LoRa.

LoRa is seeming like the best modulation technique as it is simple, has many tutorials
and examples, and has a variety of resources to pull from. Furthermore, the SAMR35
microcontroller already has the LoRa modulation scheme built into the chip.

4.3.3. Fire Detection Technologies

The solution we have chosen to tackle to the environmental issue of forest fires has been
narrowed down to sensor detection based on past research and implementation and
understanding of forest fire behavior. The devices will detect fire using three main
approaches: flame detection, gas detection, and smoke detection.

32

This approach provides an efficient method of detecting frame light in the nighttime, by
identifying infrared radiation, but also during the day by sensing specific gasses, smoke
particles, and beams of bright light (flame) (Errynando Surya Sasmita, 2018). Flame
sensors observe the wavelength of a burning flame using infrared sensors as
transducers. Gas sensors are designed to detect the concentration of specific gases in
the atmosphere also using infrared sensors. When the concentrations reach the sensor’s
maximum reading, an alarm is triggered. The common gasses released during a fire
emission include carbon monoxide, carbon dioxide, hydrogen, nitrogen dioxide, sulfur
dioxide, and volatile organic compounds (Fonollosa, Solorzano, & Marco, 2018). Smoke
detectors work by emitting alpha particles to the atmosphere. When smoke is present,
the ionized air molecules interact with the smoke. Other smoke detectors function by
emitting light to its surrounding; the presence of smoke will cause light shattering which
sends the signal of a smoke alarm (Fonollosa, Solorzano, & Marco, 2018).

Figure 19: Hydrogen sensor mounted to a tree during an experiment done in Humboldt University in Berlin, Germany.
(Nörthemann, Bienge, Müller, & Moritz, 2013)

33

Camera surveillance is also another technique that has been used by other systems. In
this case a video camera system is set up in the forest and used to recognize a spectrum
of smoke and fire during the day and night (Alkhatib, 2017). Other techniques use thermal
cameras to detect heat and glow of a fire. Moreover, Infrared spectrometers have been
used to observe specific visual characteristics of smoke. Lastly, LIDAR (light detection
and ranging) have been used to measure reflected rays from smoke particles (Alkhatib,
2017). Cameras provide a range of opportunities however there are challenges
associated with using them; cameras record images with a number of pixels and observes
the motion between the images to compare pixels to the characteristics seen in a fire.
This comparison is done through an algorithm (Alkhatib, 2017). Such optical systems are

usually integrated with local maps.
Figure 20: FireWatch adopts a similar concept to our method of scattering sensors in a forest, except their system uses

cameras (Alkhatib, 2017)

An additional advantage to our approach is the use of wireless sensor networks. A
wireless sensor network is a cluster of “low- cost battery-powered sensor nodes” that
uses wireless communication (Aslan, Korpeoglu, & Ulusoy, 2012). A wireless sensor
network mainly includes numerous sensor devices that typically use low power, low
processing memory, and low bandwidths (Bouckaert, Poorter, Mil, Moerman, &
Demeester, 2009) Within this network will be a wireless mesh network, which is defined
as a “multi-hop wireless network formed by a number of stationary wireless mesh routers”
(Aslan, Korpeoglu, & Ulusoy, 2012; Bouckaert, Poorter, Mil, Moerman, & Demeester,
2009). By creating a network of sensors that communicate with each other and send
updates to the central hub, we are able to identify localized and sweeping fires occurring
in a forest. Long Range Wireless Data Telemetry, which uses bi-directional VHF / UHF
radio frequencies, has been studied and suggested to connect multi-node fire sensors
and GPS to create a fire detection prototype with promising results due to its wide range
(IEEE, 2018).

34

4.3.3.1. Potential sensor components.

Based on the research, the following components were selected as preferable sensors to
be used in the system based on electrical characteristics (supply voltage), cost, I2C
compatibility, and principle of detection. Sensor selection will not be finalized until
potential sensors have been tested to understand their capabilities and performances.
Each sensor listed provides an advantage considerable enough to be worth exploring.

Table 7: Gas Sensors

Gas
Sensor
Name

Op.
temp.

Comm.
protoco
l/
Output
type

Op.
Volta
ge

Cost Notes

Renesas
Electronics
America
Inc. e
ZMOD4510
Gas
Sensor
Platform
Smoke
Sensors

-40 ~
+65 C

I2C
interface
Up to
400kHz

1.7V –
3.6V

5 for
$56.
13

Displays air quality index

(NOx) and ozone (O3) (20 –
500ppb).

AMU gas
sensor

-5°C ~
+
50°C

Analog
output
with
Analog
to Digital
Convert
or

1.4V 5 for
$40

CO2 (eCO2) range from 400ppm up
to 29206ppm.

eTVOC range for CCS811 is from
0ppb up to 32768ppb.

Senseair
CO2
sensor

0 –
50°C

UART,
Modbus
protocol

4.5-
5.25V

5 for
$211
.05

Non-dispersive infrared (NDIR)
principle. Signals alarm output.

CO2 400–2000ppm. Can go up to
10,000ppm in extended range

AS-MLV-P2
Air Quality
Sensor

up to
300°C

Analog
output,
requires
ADC

3V 5 for
$84

Sensitive to humidity changes and
temperature changes.

CO, butane, methane, ethanol,
hydrogen from 0 to 6000 ppm

Multi-gas,
humidity
and
temperatur

5 -
55°C

Digital
I2C
interface

5V 10
for
$20

Measures indoor air quality
parameters total VOC (tVOC), CO2-
equivalent (CO2eq), relative
humidity RH and temperature.

35

e sensor
combo
module

a typical accuracy of ±5 %RH and
±1°C.

Gasses: 0 – 60000ppm
Humidity: 0 to 100 %RH
Temperature: –20 to 85 °C

Sparkfun
Gas
Sensors

5 -
55°C

Resistor
to
Analog
to Digital
conversi
on
needed.

5V 7
sens
ors
for
$30

Alcohol, LPG, Methane, Carbon
Monoxide, Hydrogen.

Gas concentrations 200 to
10000ppm.

Gravity:
Analog
Gas
Sensor
(MQ2)

20℃-

50℃

Analog
output

 $6.9
0 for
1.

Application gas leakage detecting
equipment in family and industry,
are suitable for detecting of LPG, i-
butane, propane, methane, alcohol,
hydrogen, smoke.

Renesas
Gas
Sensor
Module for
TVOC and
Indoor Air
Quality

Up to
300 ℃

I2C 10
for
$83

Detecting total volatile organic
compounds (TVOC) and monitoring
indoor air quality (IAQ) in different
use cases.

Measurement range: 200ppm-
5000ppm LPG and propane
300ppm-5000ppm butane
5000ppm-20000ppm methane
300ppm-5000ppm H2 100ppm-
2000ppm Alcohol

Adafruit
MiCS5524
CO,
Alcohol
and VOC
Gas
Sensor
Breakout

Up to
80℃

Output is
a
resistan
ce,
analog
voltage
proportio
nal to
gasses
detected

5 V 1 for
$20.
82

Output does not identify gas
detected.

CO (~ 1 to 1000 ppm), Ammonia (~
1 to 500 ppm), Ethanol (~ 10 to 500
ppm), H2 (~ 1 - 1000 ppm), and
Methane/Propane/Iso-Butane (~
1,000++ ppm)

Adafruit
BME680 -
Temperatu
re,
Humidity,
Pressure

Up to
80℃

SPI or
I2C

 1 for
$22.
50

Temperature, humidity, barometric
pressure, and VOC gas. Must be
calibrated. Detect gasses &
alcohols such as Ethanol, Alcohol
and Carbon.
Must be calibrated

36

and Gas
Sensor

Humidity with ±3% accuracy,
barometric pressure with ±1 hPa
absolute accuracy, and temperature
with ±1.0°C accuracy.

Table 8: Smoke Sensors

Sensor Op.
temp.

Op.
Voltage

Output Cost Notes

CMOS
Photoelectric
Smoke
Detector
ASIC with
Interconnect

-25°C
to
75°C

12V Output
local
alarm

25 for
$17

An internal oscillator strobes
power to the smoke detection
circuitry for 100us every 8.1
seconds to keep standby
current to a minimum.

If smoke is sensed the
detection rate is increased to
verify an alarm condition. A
high gain mode is available for
push button chamber testing.

CMOS
Ionization
Smoke
Detector
ASIC with
R&E
International
Interconnect
and Timer
Mode

-10 to
60°C

15V Output:
local
alarm

25 for
$16.50

The smoke comparator
compares the ionization
chamber voltage to a voltage
derived from a resistor divider
across VDD.

This divider voltage is available
externally on pin 13 (VSEN).
When smoke is detected this
voltage is internally increased
by 130mV nominal to provide
hysteresis and make the
detector less sensitive to false
triggering.

CMOS Low
Voltage
Photoelectric
Smoke
Detector
ASIC with
Interconnect
and Timer
Mode

-10 to
+60°C

5V Output
signal:
local
alarm

25 for
$27.25

The RE46C190 is a low power,
low voltage CMOS
photoelectric type smoke
detector IC. With minimal
external components, this
circuit will provide all the
required features for a
photoelectric-type smoke
detector

37

Table 9: Flame Sensors

Name Op.
Temp.

Op.
Volta
ge

Comm.
Protocol /
Output

Cost Notes

ezPyroTM I2C
Pyroelectric
Infrared Flame
Sensor (SMD)

-40 to
+ 85°C

2.7 -
8V

I2C 1 for
$33.45

Thin film digital pyroelectric
IR sensors.
Full frequency range of
flame flicker (3-30 Hz).

Thin Film
Pyroelectric
Flame Sensor

-40 to
+85 °C

2.7 -
8V

Analog
output

1 for
$56

Noise at the signature 8-10
Hz flicker range of a flame
Aperture: 5.2 mm x 4.2 mm
A wide field of view of
typically 100°

QFC
Pyroelectric
Infrared Flame
Sensors,
Analog

−40 to
+85°C

2.7 -
8V

Analog
output

1 for
$73.76

In triple IR flame detection
Noise characteristic at the
signature 8 – 10 Hz flicker
range of a flame. Used for
forest protection. Wide field
of view, typically 100°

KEMET’s QFS
pyroelectric
flame sensors

 1.75
–
3.6V

I2C 1 for
$24.82

High dynamic range to
ensure rapid and accurate
detection of small and large
flames, nearby or over larger
distances.
Full frequency range of
flame flicker from 3 – 30 Hz.
90° field view

Analog’s
ADPD2140BCP
ZN-R7
photodiode

-40 to
85 °C

8V I2C

1 for
$2.47

Near Infrared Sensor: IR
array primarily used to
detect for infrared rays
Spectral range from 800nm -
1080nm

Compatible with the
ADPD1080 photometric
front end.

Adafruit
AMG8833 8x8
Thermal
Camera Sensor

Measu
ring
temps
of 0°C

3V or
5V
micro
contr
oller

 1 for
$39.95

8x8 array of IR thermal
sensors.
64 individual infrared
temperature readings over
I2C. Detect a human from a

38

to
80°C

or
comp
uter.

distance of up to 7 meters
(23) feet.

Adafruit
MLX90640
24x32 IR
Thermal
Camera
Breakout - 110
Degree FoV

Measu
ring -
40°C
to
300°C

3V or
5V
micro
contr
oller

I2C 1 for
$59.95

24x32 array of IR thermal
sensors. 110°x70° field of
view

Melexis
Technology
MLX90640
thermal camera

-40°C
to
85°C

2.9V
to
3.6V

I2C 1 for
$39.95

32X24 IR array of pixels. 2
FOV options – 55°x35° and
110°x75°

4.3.4. Software Tools

Software tools play an important role in the development of a working system. This section
discusses the different tools utilized to design, develop, or prepare the system. All of the
software used for the purpose of development will be listed here like CAD programs,
Administrative tools, chat applications, and software development tools.

4.3.5.1 CAD Tools

Contained in this section are some of the CAD tools used for this project. CAD tools were
used for the mechanical design of the structure of the project as well as the PCB and
schematic design for the electrical components of the project.

Fusion 360 & Solidworks
Fusion 360 Student Edition was used to CAD and render the four preliminary mechanical
designs for this project. Without mechanical designs for the project, the system will not
function correctly. The mechanical design is almost as important as the electrical design
for this project as the system must operate and exist outdoors with varying weather
conditions and other hazards. Fusion 360 allows us to design parts that might need to be
3D printed or machined so that we can complete this task ourselves or have it created for
us.

KiCAD
KiCAD is used to make the schematics as it is open source, free, and provides all the
tools needed to create any PCBs. Schematics are an important part to the development
process as many bugs and errors are found at this stage and designed out of the system.
Without schematic software, these problems may manifest into larger problems when the
design is put to the test in real life. Furthermore, once money is spent on a faulty design

39

it cannot be recovered. It is essential that designs be worked out before moving from the
schematic stage. The program then allows the conversion from schematic to PCB Layout.
This will let us send the data to a manufacturing house and they will manufacture our
PCBs for us. Lastly, the program allows the creation and modification of schematic
symbols and footprints as well as the ability to import them from vendors or distributors
that sell the products. This means we can get the most up to date data about the electrical
components we will purchase.

4.3.5.2 Administrative Tools

Contained in this section are some of the administrative tools used for this project.
Administrative tools are defined by us to be any application that helps in the creation of
documentation, communication, or organization including, but not limited to, file storage
on a computer.

WhatsApp
WhatsApp was chosen as our tool for general communication. It is simple and does not
have many integrations as some other chat applications, but it is lightweight and allows
for chatting from a computer or smartphone. This means that we can always
communicate if necessary. Once a group is created, we can talk, and chat and it does not
seem as if there are any limits on file or image uploads as other chat applications may
have. Furthermore, most of our team already had the application, so it was a quicker way
to get started than learning or downloading a new application.

Microsoft Teams
Teams is another communication tool we chose to do meetings online. It provides
conference calls, video calls, screen sharing, and file sharing to help us organize and
meet up in an efficient way. It is also accessible through our phones and computers which
allows us to communicate easily at any time.
The screen sharing feature lets us communicate and share our parts effectively during
meetings. It also provides messaging and filing system to keep our works if needed. It
can access our calendar by logging in using our knights’ email. Since it is accessible by
using our knights’ email, we all have an account already made. Furthermore, it can utilize
other Outlook features such as Word. We can also add other applications such as Trello
as an add on.

Trello
Trello allows for task planning and scheduling so that everyone knows what project
component is due at what time. This also allows each group member to schedule
individual parts of the project so we can all see the big picture and stay organized. The
many integrations of Trello allow us to do almost anything we want. Currently, we are
using the Calendar integration so that it formats all our due dates into a calendar so that
everything can be found quickly and easily. There is no confusion on when a deliverable
is due.

40

In Trello, this is accomplished by creating a “Board” and then assigning “Cards” to that
board. Each card can be assigned a due date and many different tags such as “In
progress” or “Completed”. This allows us to see the status of each task and who is
assigned as well as to store data from different meetings. We usually store meeting notes
in Trello since all of our weekly meetings get scheduled there.

Microsoft OneDrive
OneDrive allows for use to easily share files together. The ease of one drive, compared
to other tools like Google Drive is that OneDrive will sync files from the cloud to our
computers directly. This means we can edit files and upload/download files directly from
the file explorer. No need for a browser or external tool. The expansiveness of OneDrive
also allows us to connect it to smart phones so that we can view documents on the fly.
OneDrive has allowed us to just work on files and share files easily without an apparent
“middleman” like Google.

Microsoft Word
Since we are using OneDrive, it became clear that we should also be using Microsoft
office tools to work on our documentation. Word features a very comprehensive (but
expansive) collaboration element so that we can all work on a document at the same
time, but still have the power that Word provides normally offline. All the standard
formatting tools exist, but in addition to that we can write comments and open up a
collaborative chat with users currently editing a document. This means that we can quickly
and easily discuss document changes and formatting changes without the need to go
through other applications. It makes everything just that much easier to edit and work on.

4.3.5.3 Software Development Tools

Git
Git is the de-facto tool for version control across software projects. Git works by tracking
changes byte-by-byte to files within a directory. This is useful when multiple users are
editing a file at the same time. The way Git structures itself is by using “branches” which
a user will “checkout” to. When checking out to a branch, the user creates a local copy of
the files stored/tracked in the remote repository of code. The code that is changed locally
on the user’s computer is not the same as the code that’s in the remote repository. This
is useful as the user can make any changes they want.

If another user wants to make changes to the same file, they clone those changes which
allows them to work on the same file, unencumbered. When these two users complete
their modifications, they will “commit” and “push” these changes to the remote repository,
allowing their changes to become public and Git will automatically “merge” the changes
into the current working branch. As long as there are no conflicts, the changes are
accepted and saved in the remote repository. If there are conflicts (i.e. modifications to
the same place in the file) then the users must manually accept and merge those changes
that are correct. Git can be used to track binary files, but any change to the file usually

41

results in a large change across each byte of the file thus causing the whole file to be
updated.

Atmel Studio 7
Atmel Studio 7 is the IDE that is suggested to be used with the SAMR35. It includes a C
and C++ compiler for the microcontroller, and so we will use it for programming,
debugging, and writing code for the SAMR35. Atmel Studio 7 features a programmer
which is beneficial as the compiler, code editor, debugger, and programmer are all in one
software package.

Python
Python is one of the popular programming languages known for its ease of use. It has the
simpler syntax and format compared to other languages such as C or Java. It is the main
language used in the recent computer vision applications and offers abundant libraries
for us to implement them in our system. Other well-known libraries such as OpenCV and
Pytorch uses Python to implement computer vision. Most of the CNN (Convolutional
Neural Network) models are trained and available in Python via GitHub. Tutorials and
other guidance are available due to its popularity which will help us in debugging and
constructing our code. It is easy to learn which will save us time and let us improve our
system further.

C++
C and C++ are the standard languages used in embedded programming. As such, C++
will be used to program the SAMR35. C++ has a lot of features and syntax taken from the
C language but allows for classes and data structures to be built and used from the
standard library that C does not. This means that it will be easier to maintain the software
we write, and it should be easier to implement.
C always followed the paradigm that nothing should be hidden and that it should have the
simplest features so that the programmer is the one to implement all of the functionality.
C++ Follows the paradigm of “C is a good foundation, but we can do better” and allows
for a lot of expanded functionality that the C language does not provide. Other
technologies like Rust were investigated, but C++ is a good mix between object-oriented
software principles and embedded systems.
 Atom
Atom is simply a text editor that provides syntax highlighting for different software. Some
of the software and text documents will be edited in Atom since Atom provides a lot of
plugins for productivity.

Putty
Putty is a terminal emulator and serial console that allows for quick and easy connection
to serial devices. When communicating with a device over UART, especially for
debugging purposes, Putty will become invaluable. Since it is a free and open source
program, it will have many features that we will find useful. Putty supports many different
communication protocols other than serial communication like Raw, Telnet, Rlogin, and
SSH. Since we are using a Raspberry Pi, it may be useful to use the serial console
through the UART pins of the Raspberry Pi or if we are using any Raspberry Pi that is not

42

the Raspberry Pi Zero for testing and debugging, we could use SSH to communicate with
it via Ethernet, assuming we are using windows computers and may not have the ability
to SSH.

4.4. LoRa

This section covers the methodologies and lower level implementation of the LoRa
modulation scheme.

4.4.1. LoRa Overview and Definition of IoT

A current “Buzz Word” all over the world is “IoT.” IoT stands for Internet of Things. A
“Thing” in IoT Is some kind of device that is able to sense information about the world and
transfer that data over a network. IoT devices share their data by connecting to an IoT
gateway or other edge device where the data is sent to the cloud to be analyzed (Rouse,
2020). This connection together allows for a bit of power as the data that is collected can
be interpreted in many different ways. The ways it is interpreted defines what kind of
information someone can learn from that data.

LoRa, literally “Long Range”, is a proprietary spread spectrum modulation scheme that is
derivative of Chirp Spread Spectrum modulation (CSS) which trades data rate for
sensitivity within a fixed channel bandwidth (Semtech, 2015) The idea is create a physical
layer protocol that is separate from higher layer implementations which allow the protocol
to be generically used with new and existing devices.
LoRa is bandwidth scalable, low power, and long range modulation technique. It allows a
very large link budget that exceeds conventional FSK (Semtech, 2015).

4.4.2. Quick Discussion of Common Modulation Techniques

Modulation is the act of changing a carrier signal to transmit information. A Modulator will
turn digital data into an analog wireless waveform and a Demodulator will take the
wireless waveform and convert it back to a digital signal. The goal is to convert this digital
signal into something that can be sent wirelessly without interference to some other
device amidst all the electromagnetic signals currently in the air.

This section quickly covers the three prominent modulation techniques. Modulation
techniques as a whole are not limited to these three and may, in fact, incorporate multiple
different schemes or modifications on these schemes to enhance different features of
their wireless network. This section does not compare or contrast the different methods
and does not explain the advantages of each, only the different methodologies as a whole
to understand LoRa and how its modification on Chirp Spread Spectrum Modulation is
relevant.

43

Amplitude Shift Keying
Amplitude Shift Keying (ASK) works on the principle that a digital 1 map to the presence
of a signal at some amplitude while a digital 0 maps to the absence of that signal. A device
can send a binary symbol by changing the order of presence to absence of this signal. A
simple view of this technique is for every digital “1” that the device sends, it turns a signal
on and for every digital “0” the device sends, it turns the signal off.

Frequency Shift Keying
A popular modulation technique. Similar to the above, Frequency Shift Keying (FSK)
works on the principle that the two digital states are represented by a constant signal that
varies in frequency. By changing between a high frequency signal to a lower frequency
signal, the device can transmit a 0 or 1.

Phase Shift Keying
The device, in Phase Shift Keying (PSK), will alter the phase of a signal when trying to
transmit information. For example, the signal might be at some frequency constantly, but
if it is a positive signal it might mean a digital “0” but when changed to the negative
waveform of that signal it means a digital “1”.

4.4.3. Chirp Spread Spectrum Modulation (CSS) & LoRa

LoRa uses a modified version of Chirp Spread Spectrum Modulation (CSS). Chirp Spread
Spectrum was developed for radar applications in the 1940’s (Semtech, 2015). It has
become more popular recently as it is low power and great sensitivity. Unlike other
modulation techniques, it seems to have the inherent ability to resist multipath fading,
Doppler effects, and interference in the same bands. The idea is that a “chirp” has a
constant amplitude but the frequency passes through the entire bandwidth in a certain
time. If the frequency increases it’s called an “up-chirp” and if the frequency changes from
highest to lowest it is considered a “down-chirp” (Ghoslya, n.d.).

The alteration between up-chirps and down-chirps create the symbols for LoRa.

Figure 21: Spectrogram of LoRa physical layer (Ghoslya, n.d.)

44

The image above shows a LoRa frame on the physical layer. The frame consists of 8
preamble symbols, 2 synchronization symbols, the physical payload, and an optional
CRC. The symbols are demodulated as 0’s and 1’s which cat be any kind of packet as
defined by the project.

Lastly, an interesting feature of LoRa is the ability to change the Symbol Rate. By
changing the “spreading factor” used in the LoRa implementation, the device can change
the properties of the signal. LoRa uses three different bandwidths: 125kHz, 250kHz, and
500kHz. As a quick overview of all of this, incrementing the spreading factor by 1 roughly
doubles the time to send the symbol. Therefore, a lower spreading factor results in a
higher data rate and a higher spreading factor results in a longer transmission. Since
there is this relationship, the Symbol Rate can be defined as this relationship here:

𝑆𝑦𝑚𝑏𝑜𝑙 𝑅𝑎𝑡𝑒 =
𝐵𝑎𝑛𝑑𝑤𝑖𝑑𝑡ℎ

2𝑆𝑝𝑟𝑒𝑎𝑑𝑖𝑛𝑔 𝐹𝑎𝑐𝑡𝑜𝑟

This means the device should use a higher bandwidth and lower spreading factor to get
the highest symbol rate. Doing so, however may affect the power consumption during
transmission since time to transmit increases and/or different parts of the internal circuit
may be active at different intervals.

5. Design

This section is a high-level overview of the fire detection system. In this section, there is
an overview of the major function blocks, the use cases, and descriptions of the hardware
and software sub-systems. The design should take components from all the previous
sections as well as considering our design goals and motivation to create the final product.

5.1. Use Cases

The system, for all intents and purposes, will act autonomous but users still must interact
with the system for the goal of the system to be successful. These uses are shown in the
following sections.

5.1.1. Uses Case Diagram

Figure 19 below contains the use case for the fire detection system. There are three uses
for the system: the Firewatch Official, the Installer, and a Networked Device. All three of
these users will have to interact with the system.

45

Figure 22: Use Case Diagram

5.1.2. Functional Design

The system is designed so that a fire watch official can check notifications from the
system. These notifications will detail information about the mesh network and the
individual devices connected to it. The fire-watch official can do no more than check the
notifications and ignore them if he chooses. The Networked Devices and Installation
personnel are the only users who may send notifications throughout the mesh network.
The Installer will connect a device to the network and then may send a test notification
throughout the system if he chooses. A Networked Device will evaluate the sensor and
network data and choose to pass that notification to the mesh network if it meets certain
criteria

5.2. Hardware Design

The hardware design refers to the electrical hardware that will be present within the
system. The hardware must work autonomously with very few failures at all times (day
and night) to align with our design goals and motivations.

5.2.1. Hardware Block Diagram

The following diagram shows the hardware design sub-systems. There are 4 major
subsystems. The top row of blocks shows the power sub-system. This subsystem is
comprised of the solar panels, battery charging, and battery protection. This filters down
into power regulation to create the specific power rails necessary to power the sensors,
controllers, and the RF circuit. The 3 other subsystems comprise of the Sensor circuits,
the sensor control and processing, and the Network control and processing. These parts

46

of the circuit are dominated by software instead of electrical considerations. If the serial
communication circuits and power circuits are fine-tuned, these 3 subsystems will work
well. The antenna and RF design must have care taken as RF antenna design must follow
specific rules.

Figure 23: Hardware Design Block Diagram

5.2.2. Microcontroller and Processing Device

The system will make use of two processing devices/controllers. The SAMR35 and the
Raspberry Pi Zero. These two devices will allow for much simpler interfacing and
separation of responsibilities for the system. This will also allow our power consumption
to be a minimum during down time but the simplicity of programming for our up time. The
SAMR35’s responsibilities include the Network control and processing. It will handle
communications within the LoRa network and the connection to the network. The
Raspberry Pi Zero will facilitate the sensor readings and the formation of packets. The

47

root node must contain a SAMR35 to process root node packets, but once it retrieves the
data out of the SAMR35, any device can be used (such as another embedded system or
a standalone computer). The SAMR35 uses the SX1276 Low Power Long Range
Transceiver. This module incorporates an FSK modem and a LoRa modem.
The device can operate in the 137MHz to 1020MHz range and is complient with
IEEE802.15.4g. Since this module is built in to the SAMR35, it does not have to be a
standalone device.

5.2.3. Hardware Schematics

The following sections are descriptions and diagrams of the preliminary hardware
schematics for the project. There are 4 sub-systems regarding hardware: Network,
Raspberry Pi, Sensor, and Power. These 4 sub-systems must work together to do the
final goal of detecting a fire.

5.2.3.1. Preliminary RF/Network Sub System Schematics

Figure 24: RF Switch Schematic

The schematic above in Figure 21 handles switching the RF signals so that we can use
a single antenna. In RX mode, the circuit is slightly different in the way it filters everything
than in TX mode. Furthermore, this allows us to have two separate circuits on the TX side
to select between different bands. For now, the idea is to solder a resistor between GND
or VDD to select the band. The schematic for the SAMR35 in Figure 22 is simple as of
right now, since it is only the minimal parts to facilitate the RF side of everything and the
chip function. It has the UART ports accessible as well as connections to the RF switch.
Everything must be 50-Ohm impedance matched.

48

Figure 25: SAMR35 Preliminary Schematic

5.2.3.2. Preliminary Raspberry Pi System Schematics

Since the SAMR35 will do a lot of the RF work, the Raspberry Pi will do a lot of the heavy
lifting for interacting with the sensors. It will be connected to the SAMR35 via serial
connections and to all the sensors via I2C or SPI connections. This connection will allow
it to easily collect data from all the sensors. The connections are shown in Figure 23.
Ideally, the Raspberry pi is turned off most of the time and will be powered up only when
it needs to do a sensor reading. It is possible though, if power consumption becomes an
issue, that the SAMR35 does all the sensor readings and reports them to the Pi when
applicable.

Figure 26: Raspberry Pi Connection Preliminary Schematic

49

5.2.3.3. Preliminary Power System Schematics

The initial design for the power system is to have the solar panel array hooked to a voltage
simulator that regulates the 12-volt nominal source to a 5 volt 2 amp max source. This is
done to handle the irregularities with solar radiation levels throughout the day caused
from varying reasons. This keeps the charging IC constantly running at the most efficient
state. To maintain a constant output the right solar panel is needed for this system.

Figure 27: Voltage Regulator Schematic

For the solar panel itself the panel must be able to output 12 volts nominally to supply the
regulator and must have redundancies to help handle the changing solar radiation levels
throughout the day. For this reason, a panel with many solar cells in series and parallel
is needed to help with these issues. A panel similar in design to the one below is needed
for this project. A panel like this has many cells linked up in series and then those sets of
cells are then paralleled to prevent one cell getting covered or one cell breaking causing
the entire panel to go bad and stop supplying power to the system.

Figure 28: Top View Solar Panels

50

5.2.3.4. Preliminary Sensor Circuit Schematics

This section provides an overview of the initial sensor schematics for gas, smoke, and
flame detection. These sensors are still undergoing examination and testing to determine
their feasibility for the system.

Gas Sensor

The BME680 by BOSCH can detect ambient temperature, humidity, and barometric
pressure and, most importantly, a range of gasses such volatile organic compounds. The
sensor is also able to provide the air quality using an index provided below. This gas
sensor can use both I2C and SPI communication protocols. However, for the schematic
above was designed to select I2C.

The sensor can detect a range of b-VOCs such as Ethane, Isoprene, Ethanol, Acetone,
and Carbon Monoxide. The output includes raw pressure, raw temperature, raw relative
humidity, raw gas resistance, sensor-compensated temperature in Celsius, sensor-
compensated relative humidity (%), sensor compensated gas resistance (Ohm), Index for
Air Quality, CO2 equivalent in ppm, b-VOC (ppm), accuracy status of IAQ, gas
percentage based on the individual sensor history, as well operational parameters such
as stabilization time status and run in status.

Figure 30: Air Quality Table (Bosch)

Figure 29: Gas Sensor Schematic

51

Smoke Sensor

For smoke detection, the RE46C141 CMOS photoelectric smoke detector will potentially
be integrated into the system. The design includes a photo amplifier to use with an
infrared emitter/detector in pin 3 (Detect). The internal oscillator allows for smoke
detection to occur for 100us every 8.1 seconds; this helps to minimize standby current.
When smoke is sensed, the detection rate is increased for verification purposes. Every
32 seconds, the device checks for low battery and chamber integrity. The smoke chamber
is located between pin 3 and 6 and is illustrated below. The internal comparator compares
the photo-amp’s output to an internal reference voltage. When the smoke conditions are
met, the device triggers the local alarm. This device requires an supply voltage for
approximately 12.5V, which must be taken into consideration when designing the power
supply rails. The RE46C190 may be used instead since it fulfils the power requirement
and is also designed for similar applications.

Figure 32: Smoke chamber

Figure 31: Smoke Sensor Schematic

52

Flame Sensor

Two methods of flame detection will be used: non-visual and visual techniques. The non-
visual technique will use the ADPD2140 infrared light angle sensor by Analog. This
sensor includes a sensor array for 2-axis light angle measurement. It is able to provide a
linear response to the angle of incident light within +/- 5° with an angular field of +/- 35°.
This sensor is typically used in robotics to allow the robot to follow a beacon of LED or
remote emitting infrared light for the robot to follow. In this application, the beacon will be
the fire emitting infrared waves. The sensor can detect infrared rays from 800nm to
1080nm. More importantly this device has a built-in visible light blocking optical filter that
is able to filter unwanted visible light such as sunlight and indoor lighting.

The ADPD2140 will be connected to the ADPD1080 front end which will process the data
from the sensor array. More importantly, the ADPD1080 will communicate using I2C to
send the data to the processor for data processing. This combination allows for additional
ambient light rejection, low power operation, and analog-to-digital conversion of the
ADPD2140 output signals.

Figure 33: NIR Sensor Schematic

53

The thermal camera will potentially be used as a visual technique for flame detection
depending on budget allowance. The MLX90640 thermal camera by Melexis
Technologies is small and low cost 32x24 pixel infrared sensor array that is I2C
compatible. It can operate from -40°C - 85°C and is able to detect temperatures from -
40°C - 300°C. The sensors come readily calibrated from the factory and contain 768 FIR
pixels. Below is a diagram while illustrates the pixel position and the whole field of view.
The field of view for the X axis can be in 110° or 55°, and for the Y-axis 75° or 35°,
respectively. The noise of the pixels for high temperatures is lower than that for low
temperatures. Pixels in the corner of the frame will be nosier compared to the sensors in
the middle of the frame.

Figure 34: Thermal Camera Sensor Array (Melexis, 2012)

54

The schematic below is a simple representation of the electrical design. A 1k ohm resistor
will most likely need to be connected between the SCL and the MCU input, as well as
between SDA and the MCU. A 10uF and 100nF capacitors will eventually be integrated
to VDD in parallel as recommended by the datasheet.

The device can be used to calculate temperature a well as used in “image mode”. This
would allow for the thermal image to be obtained which will be used for visual flame
detection. The computation flow for this would include calculating supply voltage for the
pixels, ambient temperature, gain compensation, IR data compensation, IR data gradient
compensation, normalizing to sensitivity, and finally image (data) processing. Image
mode opens the scope of integrating concepts and techniques from machine learning to
train the system to identify flames.

Figure 35: Thermal Camera Schematic

5.2.4. Mechanical Design

The following mechanical designs are potential ideas on how the system will be mounted.
The designs each have 2 components: The mounting apparatus and the system
functional area. The functional area, for these preliminary designs is represented by a 3D
cube. The estimated size of this area is only 15 centimeters. The 3D cube is meant as a
guide to see the area in which we expect the structure of the system to occupy. It is not
necessarily to scale. The system is designed in such a way that it is mounted to a tree or
other tall structure. The first design in Figure 21 simply gets mounted to the side of the
structure. It has 6 screw holes to allow for mounting. And is the simplest and quickest to
install. This works great for a small system and large trees as the tree’s trunk will appear
as a flat surface at small scales.

55

The second design, shown in Figure 22, has a large loop that gets wrapped around
something that would fasten the system to a tree. This could be the trunk of the tree or a
branch. It is the simplest design to install as it just requires one point to lock the
mechanism to the surface. A downside to this design would present itself for items with a
large radius as the band would have to be large enough to support the device. This design
is scalable with almost any size of the system, big or small.

Figure 36: Mechanical Design A

Figure 37: Mechanical Design B

56

The design idea represented in Figure 23 would get clamped around a tree branch high
in the tree. It is not designed to be clamped around the trunk of a tree. This design would
be attached by clamping the bottom part to a branch like a claw. A difficulty of installation
might appear when trying to install the system in a high/tall structure and mounting it
vertically. Due to the longer arm on the design, it creates a stronger moment of inertia
and could prove difficult to implement with a heavy device.

Finally, the last design shown in Figure 24 is hung on a tree branch or other horizontal
structure. This is a great design for simplicity. It allows the installer to simply hang the
device wherever it needs to be. For quick/temporary deployments it might be the best
solution. For long term deployments, this solution may need some form of bracket or
screws to be inserted to lock the device to its structure so uncontrolled scenarios like
weather or animals cannot move or knock the device off its structure.

Figure 38: Mechanical Design C

Figure 39: Mechanical Design D

57

5.3. Software Design

Similar to the hardware design, the software design must be as reliable as possible and
have minimal failures. When a failure occurs, it must also be able to correct for those
failures or allow for itself to be ignored or disabled until a time when it can be replaced.
The following subsections discuss the software designs and the methodology in place to
make the controllers do their job.

5.3.1. Design Methodology

The design methodology that we are to employ for this project is to keep every function
compartmentalized to its own controller. There are two controllers: Sensors/Fire detection
and Network. The Network controller’s job is to join and manage its connection to the
network while the sensor controller’s job is only to read all the sensors and determine if
there is a fire.

This idea of keeping the functionality partitioned among the hardware allows for simpler
software to be written and for the system to use the least amount of power possible during
idle. The only interaction between these two controllers is the sensors controller sending
a notification to the network controller that there is a fire, and possibly a small message
string to send along with it. It is possible that other binary data is sent (such as raw data)
and so the two systems will need to be able to communicate simply and effectively (such
as through the SPI protocol or UART protocol).

Network Controller:
The network controller is responsible for making a mapping between itself and the other
controllers already in the network. When joining a network, it will beacon a join request
and the controllers in its vicinity will respond with linking information. This is to ensure that
the controllers can be in the same network and to avoid duplicate packets being sent. The
controller will then continuously listen for packets of data and will absorb packets until a
timeout, or the sending controller decides it is done sending.

At this point, the network controller will send packets to all in its network map (except for
the sender) to attempt to get the data back to the root controller. If it hears any repeated
packets from another controller, then it will discard them. To arbitrate between a busy
network, random delays will be introduced to avoid controllers from responding to other
controllers whose messages are already being sent.

A second function of the network controller is to wake up the Sensor Controller, which
should be shutdown at all times. The Sensor Controller will be woken up in 2 different
cases: A fire has been detected or a timeout has been triggered. This is to avoid
unnecessary power consumption. The Network Controller may or may not send a
notification through the network that the Sensor Controller is turned on or off at any time.

58

Sensor Controller:
The sensor controller is to stay asleep/shutdown when not reading sensor data or
processing the sensor data. When the Sensor Controller is complete processing its data
it will send a shutdown notice to the Network Controller so it may configure its timers or
send notifications to the network. The Sensor Controller will read all available sensors on
its communication busses and read data from a camera if applicable. Using this data, it
will decide if there is a fire in its vicinity or if there is not a fire. It will report this decision to
the Network Controller and prepare to shut down.

5.3.2. Software Block Diagram

The software block diagram shown in the figure below is the basic design that we are
following for the full software package of the system. This diagram does not differentiate
between the network controller or the sensor controller, so it appears as one conclusive
system. In reality, the “Main Loop” and the Network side of the diagram will be managed
by the SAMR35 and the Sensor Data side of the diagram will be managed by the
Raspberry Pi. The data path between the two systems will be worked out as an “on chip”
communication bus between the two systems.

Figure 40: Software Design Block Diagram

59

5.3.3. Network Software
5.3.3.1. Network Flow
This section describes the “Network Flow” of the system. The network, in normal
circumstances, will not be busy. Most of the traffic exists when broadcasting a message
to or from the root node as it must propagate through the network to its destination. The
image below describes a Join Request case.

Figure 41: Join Request flow diagram

When a Join Request is received the currently “Not Connected Node” Will broadcast a
Join Message and all connected nodes in the vicinity will respond with an
acknowledgement. This acknowledgement is important so the previously disconnected
node knows that another node can hear the message. After some time, the node will send
a generic message to the root to request for an acknowledgement from the root. As far
as all the connected nodes are aware, this new node is sending messages through the
network but has not “joined” the network. Once the not connected node hears the
acknowledgement from the root node, it will consider itself “Joined” to the network and
will now attempt to forward packets in the system. A “Not Connected Node” can send
messages through the network but will not forward messages through it.
Acknowledgements are generally not required in our mech scheme, but without them,
there is no way for the node to know that it is correctly connected to the network.

60

In this section, only two figures are present to describe the flow of packets in the network.
Other kinds of messages follow similar protocols as these two messages in some way. In
one of the flow charts in section 5.3.4 Software Events & Flow, a generic case is reviewed
where a generic message is received. The figure below describes a “Fire Packet” which
follows a similar protocol as the generic case, but with some extra work.

Figure 42: Fire Packet flow diagram

When a fire is detected at a “far node”, that node will send a message to the root alerting
of the fire to the nodes closest to it in a broadcast. These “close nodes” will forward the
fire found message to the root node. For every valid fire packet received, the node will
wake up its sensors and begin looking for a fire to report. In this time, it will continue to
normally forward packets as necessary. If the “close nodes” detect fires in their area as
well, they will send the “fire found” message to the root node as well. When the original
“far node” receives an acknowledgement, it will stop sending “Fire Found” packets
regularly. This “stop” condition is based on two things: Acknowledgements and Timeouts.
To stop the network from getting busy, the sending nodes of a fire message will stop
sending packets if and only if an acknowledgement to stop has been received or a
timeout. Eventually, all the nodes will stop reporting the fire continuously and will wait
some amount of time before reporting the fire.

So far, all messages have been treated as asynchronous and can send at any time. In
the event of a busy network or hot spot (very many nodes in a small area) then some kind
of network arbitration will be necessary.

61

First, it is important to understand that each node will maintain a packet buffer to store
received messages before sending. The node will hold onto these packets until it is time
to forward them. This buffer only contains packets that need to be transmitted, not packets
that are invalid or are internally processed. This buffer will need to be sufficiently sized to
handle a busy network with many forwarded packets. To arbitrate who may send, nodes
that receive packets that require transmitting a message (such as forwarding the
message) will wait a random amount of time before sending their message. Each node
will assume that after this amount of time, they may send a packet. Receiving a message
during this delay will multiply the timer by some factor to ensure that the waiting node
does not interrupt a current transaction. Ideally, each node maintains its own state such
that it can forward messages without losing state while waiting for an acknowledgement
or response. This scheme alone sounds like it may work but runs the risk of packets never
forwarding through the network if the network is busy. The packets will eventually be
forwarded since the network will eventually go silent and packets will slowly trickle through
the system until they all go through. Packets going through the system will be assigned
some priority (on a first come first serve bases) that is supplemented by the type of packet
that comes through (for example a “Fire Packet” might have higher priority than a “Join
Request” Packet). Higher priority messages are sent first before lower priority messages.
Lastly, messages that sit in the buffer longer than other messages will accrue a higher
priority than their initial priority. This ensures that packets, eventually, get through the
system. Some packets may not gain a higher priority past some point. This allows for
some packets to always have a higher priority overall to other packets (for example a
“Join Request” might always have a higher overall priority than binary data).

The last bit of arbitration is to ignore repeated and invalid packets. Since it is a mesh
network with different nodes receiving different messages, packets that are repeat
packets will be ignored by the receiving node. In this case, if multiple nodes can hear
each other, they do not send packets in a cyclic pattern and then get stuck in a loop of
transmissions. If a packet is received from the same origin multiple times it will be
considered invalid and will be ignored. This invalid state will persist for some time to avoid
packets getting through. After enough time has passed for that packet, the state will no
longer be considered invalid and a repeated packet can get through. Packets that come
from the same sender will be allowed to pass through multiple times to allow for valid
repeat transmissions. This means that before forwarding a packet, the node must check
the origin of the packet and the sender. If the sender and origin are the same, or the origin
has not been heard from before, then the packet is valid. If the packet has come from that
origin before and the sender is different than the first sender, then the packet is ignored
and considered invalid. This methodology, in theory, creates multiple paths from the origin
point to the root where repeated packets are also sent along this path. The quickest path
to the root node is the path that will prevail in transmitting the message along that path.
Acknowledgements will get forwarded along this path. It is a stretch goal that the original
join request and subsequent heartbeat packets will determine this ideal path and will set
it up as the primary path that messages get sent along. This may avoid issues with
clogging the network and may act as a form of load balancing over time.
The system will not, initially, support load balancing of this form unless it is found to be
necessary within the algorithm to do so.

62

5.3.3.2. Network State Machine

This section discusses the different states that the network controller has. To make
software easier to implement, a state machine will be used for the embedded software
design. This state machine will allow the network controller to understand its state and
environment and keep the code compartmentalized and simpler to maintain. The state
diagram below shows the transitions between states.

Figure 43: Network Control State Diagram

The state transitions are complex and there are many of them. Structuring the software
in this way allows each individual state to be simple code compared to complex code.
The initial state is the Network state. This state handles storing all network data to non-
volatile memory if it changes and to determine if we are in a valid network. “Heartbeat”
packets may be sent in this state as well. Notice that there is no state for receiving packets
on the network. This is because receiving packets will be serviced in an interrupt.
Interrupts will be discussed in a later section. After the Network state, the system
transitions to “Timer_Reset” which resets the timer to its delay time.

63

From here, if there are packets to send then the system will do so in the “Send_Buffer”
state. If everything is ready to go, or the system has been sending packets for too long
then the “Waiting” state is invoked. During this state, nothing happens. A loop will wait
until the timer is done running to move on. The next state in normal operation is the
“Pi_Boot” state. This state will turn on the Raspberry Pi and will wait for the Raspberry Pi
to acknowledge that it has turned on. If the raspberry pi does not respond, within some
amount of time, the network controller will transition back to the Network state. Otherwise,
with a successful turn on sequence, the network controller transitions to “Pi_Active”.

This state handles servicing the Request Queue and the request-respond structure. After
each request, a response is expected from the Raspberry Pi. This response, in turn, gets
immediately stored in the packet buffer. This is repeated until the packet buffer is full, or
there is no more data to send. From that point, the network controller will go into the
“Pi_Shutdown” state and send a “Finished” request and will only wait for the shutdown
notification. The Raspberry Pi may do anything until that point. The once the Pi responds,
the controller will enter the “Send_Buffer” state and attempt to empty the packet buffer.
Assuming everything is good and the buffer is empty, the controller will transition back to
the “Network” state and everything begins again. If the network is busy during the
“Send_Buffer” state, then the controller might transition to the “Hold_Buffer” state for
some time. If it cannot get a chance to empty the packet queue within some amount of
time then a timeout will occur and the Network state will immediately be transitioned to.
The table below describes the different states in a more concise manner.

State Next State Transition
Condition

Previous State Description

Network Timer_Reset A network has
been joined

Initialization Saves Network
State and other
tasks

Timer_Reset Waiting Buffer is empty
& Timer is not
completed or
Timeout

Network Starts Timer for
waking up
Raspberry Pi

Send_Buffer Buffer is not
empty

Network_Join Timer_Reset A network has
been joined

Join Interrupt Joins the
Network

Waiting Pi_Boot Timer interrupt
is fired

Timer_Reset Waits for
interrupt to fire
from timer

Pi_Boot Pi_Active Pi responds Waiting Turn on the
Raspberry Pi Network Pi does not

respond

Pi_Active Send_Buffer Packet buffer is
full

Pi_Boot
Send_Buffer

64

Pi_Shutdown Done sending
data

Communicate
with Raspberry
Pi

Pi_Shutdown Send_Buffer Pi sends
shutdown
notification

Pi_Active Turn off the
Raspberry Pi

Send_Buffer Hold_Buffer Network busy Pi_Shutdown
Pi_Active
Timer_Reset
Hold_Buffer

Send packets
from the packet
buffer

Network Pi is turned off

Pi_Active Pi is turned on

Hold_Buffer Send_Buffer Network ready Send_Buffer

Wait until
network is
ready

Network Timeout

Table 10: State Transitions

5.3.3.3. Interrupt Based Events
The state machine described in the previous section is the main portion of the network
controller. The other part of the network controller is related to the interrupts fired. There
will be a few interrupts that are needed to handle everything directly. The LoRa
transceiver the system uses only contains a 256 byte RAM data buffer. This means that
when data is received by the LoRa modem, we must service that data immediately. The
system can monitor up to 5 interrupts in the LoRa transceiver with configurable IO lines,
as well as different interrupts directly relating to the SAMR35. When an interrupt is
detected from the LoRa transceiver, an interrupt service routine will be fired that reads
the transceiver’s data and stores it in memory. There are three ways to handle incoming
data.

The optimal solution will most likely be a mix of the three. The first way is to immediately
service the packet. Packets that are to be forwarded will most like be serviced immediately
and attempted to be forwarded. The second way is to service the packet but store the
network packet response in the packet buffer and send it later in a different state. Likely,
this is the method to handle non-forwarded packets. They will be serviced eventually, but
not immediately. This may help with network congestion as there will be a decent delay
before packets are sent through the network. Lastly, the received packets could be stored
locally and ignored at first. Eventually these packets would get serviced in a dedicated
state for them. This option will only be used if there is a significant amount of time lost by
the waiting state in which this time will be used to process the packets. For now, received
packets will be immediately serviced with network activity only happening for forwarded
packets.

The second kind of interrupt that is generated is a button that causes the system to
attempt to join a network. When the button is pushed the “Join” protocol is initiated.
Overall, a node should never be added to the network unless there is a user attempting
to install new nodes. In the nominal case, nodes do not need to join the network by
themselves. Pushing this button will reset all the network data and re-randomize any of
the unique values/keys in the system. It does this by setting the next state to be the
“Network_Join” state. This state handles all of the join protocol and clearing of values.

65

In conclusion, there are only two major interrupt service routines that may be executed at
any time: Received packets and Join Protocol. Any other interrupts that are monitored will
be polled in their registers and used as a wait/delay.

5.3.4. Software Events & Flow
This section discusses the software events and flow that happens in the system. It
includes charts and descriptions of both parts of the software system: The SAMR35 and
Raspberry Pi.

Figure 44: General software flow when power is applied to the system

The image above is the process the system takes when power is applied to the system.
Once the SAMR35 is ready to begin running instructions, it begins this process. First it
must check if it has joined a network already. If it has joined a network already, then it
skips the join process. Skipping the join processes is critical to not get stuck in the edge
case where it can be heard by the network but can not receive messages. In this case, it
can still send messages even though it is not “joined” to the network. If the system was
not reset or trying to join a network, then it waits for a user to initiate a join by pushing a
button on the device. When pushed (unless requested by the root node to join the
network), the system will send a join request to the network. During this time the node will
take a randomly generated UID and will broadcast this UID to the network. An
acknowledgement is expected from at least one network node which will confirm the UID
and allow the node to attempt to send a packet to the root node. If an acknowledgement
is received and claims that a UID is invalid, the system will select a new UID and try again.
This is rare and shouldn’t happen. Once a valid acknowledgement is received, the node
waits to hear the acknowledgement from adjacent nodes and then transmits a packet to
be forwarded to the root node. As mentioned in the last section, it is a stretch goal at this

66

point that the node set up some kind of path memory so that the network can decide on
some kind of load balancing mechanic. Once the root node acknowledges this new node,
it will be considered “joined” to the network and can begin forwarding messages.

Figure 45: Raspberry Pi Flow

Once the system has been turned on and joined to a network, it will initialize its interrupts
and timers and begin a timer. This timer will be set to turn on the Raspberry Pi. Other
timers may be created to monitor health of the system as well as sending network packets
to the network. The most important timer, however, would be the Raspberry Pi timer.
When the Raspberry Pi is turned on, it will begin reading its sensors and determining if
there is a fire. The Raspberry Pi will then report this data to the network controller and the
network controller will decide whether or not to transmit the data. During this time, after it
has determined if there is a fire or not, the Network controller may also pass packets to
the Raspberry Pi if deemed necessary by other packets sent from the root node. This
may be control packets or requests for data. The data will be accumulated by the Network
Controller from the Raspberry Pi and it will then tell the Raspberry Pi it is done with it. The
Raspberry Pi will determine if it is to shutdown or not and then will alert the SAMR35 that
it is shutting down. When it is shutdown, the SAMR35 will remove power to the Raspberry
Pi, as shown in the figure below.

67

Figure 46: Raspberry Pi - Network Controller Communication Diagram

Another important aspect of the system is the actions to be taken when a message is
received. There are many actions that could be taken based on many different parts of
the packet that is sent to the node. All in all, there are 4 major conditions to check before
deciding what to do with a packet. The first action is checking the CRC. If the CRC is bad,
the packet is rejected. A stretch goal may be to send back a negative acknowledgement
so that the packet can be re-transmitted. This will only be implemented if time permits or
it is deemed necessary due to too many error events with communication over wireless.
Otherwise the packet is rejected, and no action is taken. The next conditions that matter
are if the message’s destination is the root, the current node, or if it is a join request. If it
is neither of these things the packet is rejected. This is so the network is not clogged by
forwarded packets that are unnecessary. From the perspective of the node, all other non-
adjacent nodes are hidden. If it receives a message for one of those nodes, it is
considered an invalid packet and ignores it. No node can transmit to a node that is
abstracted by one or more layer. Any node always knows of the root node.

Figure 47: Known Connections Diagram – Mesh

68

If the packet is a packet that must be dealt with by the receiving node, then the node will
determine what kind of reaction is necessary. Sometimes an acknowledgement may be
necessary and at this time the node will broadcast that acknowledgement. Special
consideration is taken for a fire message as this message requires the system to wake
up its sensors and check for a fire in the local area. See the figure below for more
information on the actions to take fore messages that are received by a node. Most
messages require some kind of transmission to be made afterwards.

Figure 48: Actions taken on a Message Received event

The Raspberry Pi is an important part of the system as it determines if a fire exists or
does not. From a “black box” perspective, the network controller will periodically ask “is
there a fire to report?” and the raspberry pi responds with an answer. This kind of
“request” structure is important as the network controller may have stored request packets
in an internal buffer and there may be multiple tasks for the raspberry pi to complete when
it is ready to receive requests. This methodology allows for multiple groups of data to be
grouped up on the network controller and sent, one at a time, to the Raspberry Pi to
process. Once the Raspberry Pi has serviced all the tasks sent to it, the network controller
will send a “Finished” request. This request informs the Raspberry Pi that the network
controller has nothing else to request and that the requests have stopped until the next
startup. It is up to the Raspberry Pi to decide if it is to shutdown or read sensors or do
whatever it needs to do. Prior to shutdown, the Raspberry Pi will send a “shutdown
notification” to the network controller to inform it that it is done. From this point, the
Raspberry Pi does not need to wait for the network controller and can immediately
shutdown.

69

Figure 49: Raspberry Pi decision making

5.3.5. Non-Volatile Storage of Configuration & Packet Buffer Loss

The system will store some information in non-volatile memory to ensure that upon power
loss all configuration items stay intact. Power is removed from the Sensor Controller after
it decides that it no longer has any tasks to complete. Therefore, any machine learning,
image sensing, and previous sensed data (with regards to detection confidence) must be
saved to non-volatile memory prior to shut down conditions. The Network Controller, on
the other hand, only saves its network map to non-volatile memory and some statistic
counters. All other data is considered volatile and can be changed. This decision caries
the implication that if the network is busy and power is unexpectedly removed from the
network controller, all pending packets will be lost. These packets cannot be recovered.
Ideally, however, the network can recover from this immediately since all nodes can
forward all packets to the root. In this case, a new route may be found by the network. If
the network is not created with this in mind by the people installing the network. The node
may not be able to transmit to any other nodes. Packets will be lost with no chance of
recovery in this case so care should be taken when setting up a network.

70

Figure 50: Lost Packets Diagram

The Raspberry Pi will also store data in a non-volatile way. This is important because the
models used to detect fires will only improve over time. Therefore, current conditions must
be saved in such a way that when power is lost, we do not lose the current state or the
previous conditions. When the Raspberry Pi turns on it will load the data into memory and
then process that data. Before shutdown, it will save any data it needs to, to its SD card
so that it can load it on startup.

5.3.6. Network Packet Types
To transmit and understand information effectively, the system will utilize opcodes to
know which action to take on different packets. The different packets are defined in the
table below. The major packet types are “Fire Packets” and “Join Request” packets. Fire
Packets contain information for the root node of whether there is a fire and at which
location that fire may reside. This packet is forwarded to the root by other nodes in the
mesh, however whenever a node attempts to forward a valid Fire Packet, it also will wake
up the sensors and see if a fire is in its local area. Join Request packets are for nodes in
the local area.

Any node that hears a join request will respond and let the joining node know that it can
hear it and that it is ready to receive messages. The other packets contain information to
or from the root node that may be pertinent. Heartbeat Message packets are periodically
sent out by nodes that are only read by nodes in the area. The heartbeat can receive an
acknowledgement so that the sender knows it is still in the network and can decide which
nodes are ideal to send to. If multiple heartbeats are sent out without responses, then the
sending node may have low confidence that the nodes in its internal connection list are
still connected. “Node Messages” Can be sent from the root or another node and may
contain control data such as a “I’ve heard your message” response or
acknowledgements.

71

Table 11: Packet Types

Opcode Name Purpose

0xA1 Fire Packet Alert that a fire has been detected. May
contain data to describe the sensor
readings.

0xB1 Generic Root
Message

Generic message for the root node that
may contain ASCII text as a payload.

0xB2 Binary Root
Message

Message for the root node that contains
binary data as a payload.

0xC1 Heartbeat Message Packet contains nothing. This is meant to
show that the node is alive.

0xC2 Join Request Request to join the network. Allows the
node to send and receive data from the
network. Contains a randomly generated
UID and possibly other data.

0xD1 Debug Message Could contain anything. Software Defined.

0xE1 Node Message Message to a node instead of to the root
node. Follows the same structure as 0xB1
(Generic Message).

5.4. Machine Learning

Machine learning will be used to implement computer vision for our system to detect fire
in forests. Machine learning is a topical subject that has appeared in recent years. In our
project, it is useful to classify images as “fire” or “not fire”. This classification and
identification of different features of fire makes our design case a decent candidate for
machine learning. By implementing and training a machine learning algorithm correctly,
the system should be able to identify, with confidence, a fire rather quickly. This section
will discuss the different kinds of methods to implement machine learning.

Although there are many available resources and libraries for computer vision to detect
fires, they are not accommodated to the processing power of Raspberry Pi. GPU is often
used to implement these functions specially to train the model to a certain dataset as it
can be very large and may take large amount of processing.

72

Our main task will be focusing on how to tackle the issues due to utilizing Raspberry Pi
such as slower processing, memory limit, and power consumption while being able to
output good performance fast enough.

5.4.1. Methods

This section will cover different methods/models we considered to use for detecting fire
using our system. These will cover different filters and adjustments we can do to the
images to help the system learn and identify the fire in an image or sequence of images.
There are multiple ways to help the system identify the fire. It could be using deep learning
through available pre-trained models or having functions such as optical flow or color
classification to help identify the area of the fire.

Our system will be able to ignore the background and its noises and identify the fire that
is within an image or a sequence of images with minimal processing power via Raspberry
Pi through these methods/models.

5.4.1.1. Generic Object Detectors

There are several accessible neural networks such as YOLO and Faster RCNN via
GitHub. We were also able to discover other neural network that focuses on detecting fire
instead of having functions such as object classifier. We need to identify which of these
models and neural networks will provide out system the best performance possible within
the limited time frame using Raspberry Pi. This subsection covers the comparison
between them.

5.4.1.1.1. YOLOv3

YOLO (You Only Look Once) is one of the popular object detection methods. In fact, it is
a state-of-art, real-time object detection system. It is a fully convolutional neural network
(FCN) and has no pooling used (Redmon, YOLO: Real-Time Object Detection, 2018). By
having no pooling, it avoids loss of minor features. It has great speed and accuracy
compared to other state-of-art methods as seen in the figure 51 below which is the reason
behind its popularity. For these reasons, YOLO is one of the top methods that come into
our minds to implement in our system (Redmon, YOLO: Real-Time Object Detection,
2018). Thanks to its popularity, there are many tutorials as well as resources and forums
available for this model which can help us understand and use it better.

73

Figure 51: Comparison of other state-of-art models on the COCO dataset (Redmon, YOLO: Real-Time Object

Detection, 2018)

YOLO predicts and outputs feature map that has box coordinates, object score, and class
scores as shown in the figure below. This means that it can classify and detect object at
the same time. Since YOLO is a fully convolutional network, it can adapt to different sizes
of images. However, it is recommended to have a constant input size to avoid adding
complexity and issues during implementation. Since its accuracy and speed is applicable
for real-time detection, this model is one of our top choices to implement. The reason
behind the speed of YOLO compared to Faster RCNN is its use of confidence score to
eliminate many of the predicted bounding boxes per object.

74

Figure 52: YOLO Bounding Boxes (Kathuria, 2018)

For an image of size 416x416, YOLO predicts 10647 bounding boxes. To reduce these
boxes in order to detect a dog in the picture as shown in the figure above, it uses
thresholding by object confidence score and non-maximum suppression as shown in the
figure above.

YOLO offers great information such as bounding boxes for the detection of objects. It
even classifies the detected objects from one another. However, most of these features
may not be needed for the purpose of our system. Our system focuses on binary
classification of whether the flame exists in the image or not. If time allows, we would like
to scale it to be able to differentiate the forest fires from other flames such as campfire.

75

But if the other methods without these features still perform less than YOLO, then we will
continue to use YOLO for our system. These extra features may also lead to better
scalability for the computer vision of our system by adding more information to our system.

There are multiple versions of YOLO available. The latest one would be YOLOv3.
However, one suitable for usage with Raspberry Pi would be TinyYOLO which is YOLO
adjusted for embedded systems such as Raspberry Pi. This should still be fast enough to
identify and detect objects. We only desire this model to detect fire, so the full capability
of YOLOv3 is not really what we seek for our project. Since we do not expect the model
to identify and classify in detail, the lower accuracy of TinyYOLO should pose no issue as
long as it can detect fire. Furthermore, since our project focuses on the detection of fires
in the forest, we are expecting these models to easily distinguish the background from
the fire and detect it as it will have drastic differences such as colors or shape.

Some of the concerns when using YOLO is that the available pre-trained model is trained
with a dataset that contains big distinguishable objects within an image. This may cause
the model to miss some of the minor fires. This is a drawback we are considering
accepting, since the fire should eventually be large enough for the model to detect and
not large enough for it to be too late. In addition, the pre-trained model may not be able
to detect the fire since it is not trained with any fire object beforehand. This means we
may need to find an alternate object that is similar to fire that the model detects or find a
different model that is trained with a dataset containing fire. The accuracy of the pre-
trained model can be obtained by running it with a dataset containing fire. Another option
is to train the model ourselves, but it will be time consuming as we need to create our
own dataset and train the model using CPU.

5.4.1.1.2. Faster RCNN

Faster RCNN is another state-of-art object detection method. It is easy to implement from
scratch, and many resources are also available online. It can detect much smaller objects
compared to YOLOv3. This is due to it having nine anchors in a single grid while YOLOv3
contains two anchors. This aspect of the Faster RCNN is more desirable to us than what
YOLOv3 offers as fires can be subtle and small. However, the Faster RCNN is much
slower and may not be ideal for real-time detection. We need to test the speed of faster
RCNN with our hardware to properly conclude that this is not optimal or better than the
other models we searched. Due to the already proven time consumption and processing
time compared to others, this is the least expected model to be implemented to our
system.

76

Figure 53: The structure of Faster RCNN (Ren, He, Girshick, & Sun, 2016)

Faster RCNN has a similar structure to YOLO where it has regional proposals or bounding
boxes for objects. The main difference between them would be that Faster RCNN is not
trained to do classification and bounding box regression at the same time. This makes
the Faster RCNN much slower than YOLO. Unlike YOLO, it does not effectively eliminate
the predicted bounding boxes which results in much larger computation than what YOLO
can do.

Although Faster RCNN is used widely, there is not much documentation of it being used
with the Raspberry Pi. This is most likely due to the fact that it is not suitable for real-time
detection and its speed. Not to mention YOLO is also available and is a much optimal
model for most cases.

We will attempt to implement Faster RCNN to the Raspberry Pi if possible, but if it deems
to be too time consuming due to troubleshooting and adjustments, then we are highly
considering to focus on other methods such as YOLO. We still included this model as one
of our options since it is a state-of-art and known to detect smaller subtle objects better
than YOLO.

77

5.4.1.1.3. MobileNetV2

The other models mentioned are well known and are expected to return good results after
implementation. However, as mentioned earlier, the main concern lies in whether our
embedded system can handle all the computations and processing fast enough to detect
the fire. Thus, we started looking into other models that are commonly used in a similar
set up as our system.

One of the models we found that is commonly used with Raspberry Pi is MobileNet. This
is another model that is accessible and most optimal for our hardware, Raspberry Pi Zero.
MobileNets are low-latency, low-power models for mobile applications to perform object
detection, classification, and segmentations. There are MobileNetV2 and MobileNetV3
available through GitHub (Sandler, 2019). These can also be used for real-time object
detection and can be easily implemented by Raspberry Pis. Many examples are available
online.

Figure 54: Comparison between MobileNetV2 and MobileNetV3 (Howard, et al., 2019)

As seen in the figure above, MobileNetV3 has better accuracy compared to MobileNetV2.
However, since the MobileNetV3 is new, MobileNetV2 is preferable to use when it comes
to training the models ourselves. There are details that could be found about the
hyperparameters of MobileNetV2 in the GitHub and not of MobileNetV3. For this reason,
we prefer to use MobileNetV2.

This model should be able to work well with our system, but we are not sure how better
or worse it performs compared to TinyYOLO or Faster RCNN. This is something that we
can find out only through testing and repetition. We hope to be able to implement these
models and provide a comparison between them to determine most optimal model for our
system.

78

5.4.1.2. Frame Differencing

One of the methods we can add to our models is frame differencing. It is an easy

adjustment but may prove effective in identifying small objects between frames. Frame

differencing is where we simply take a difference of values between the two images to

see where the movement is significant. This is a way of capturing the temporal information

between the images. Since flames will flicker and spread, it should have much more

movements compared to the background. Thus, we expect the frame differencing to be

effective in identifying the flame. Other concerns we had was distinguishing the flames

from other movements such as leaves swaying or movements of animals in the forest.

These can be solved by frame differencing by eliminating background noises and noticing

a big difference is an animal is detected. Then, applying additional filters such as blurring,

or normalizing will help the model detect the fire from those subtracted images.

An example of frame differencing can be seen in the figure below. The white values
indicate high differences or movements between the frames. In the example, it is
noticeable that the movement was significantly recorded for the human and the flame.
We may use this information to further ease the computations and determine the flame
or area of it at an early stage.

Figure 55: Frame Differencing (True)

There are other researches done on computer vision with fire detection using frame
differencing. The method by the Ministry of Public Security of Shenyang Fire Research
Institute shows how the smoke is also being detected via frame differencing as seen in
the figure below. This is an interesting concept as we initially disregarded the idea of
smoke being detected in our system. However, it is one of great indicators of forest fires
and we are expecting to be able to identify smoke in our system to warn or notice fire in
great distance beyond what the camera can capture. By being able to distinguish fire from
smoke, it can add better scalability to our project as smoke may provide additional
information along with the other information. We may be able to estimate distance of the
fire or its intensity by understanding and learning how these smokes are detected in our
system.

An example of frame differencing from the Ministry of Public Security of Shenyang Fire
Research Institute is shown in the figure below. It shows both cases where the smoke is
detected, and the flame is also detected by itself through the help of frame differencing.
As seen in the figure, the smoke can be large and seem to be easily recognizable. This

79

may mean that the smoke detection may possibly be added to our system. Furthermore,
these examples show how effectively can frame differencing isolate our desired subjects
of fire and smoke in order to alert our system. This is because the fire and smoke have
distinct movements compared to the other movements in the background. They also have
patterns that can be recognized using frame differencing which also helps distinguishing
them.

Figure 56: Frame differencing continued (Yu, Mei, & Zhang, 2013)

Frame differencing can greatly help in distinguishing the background from the flame and
smoke by capturing the flickering movements as seen in the previous examples. Being
able to detect smoke is an additional feature that may significantly improve our system’s
effectiveness and utility. For instance, even if we miss to detect the small flame, the
smoke can trigger the system earlier rather than waiting for the flame to be large enough
to be recognizable. Adding this feature to our model should increase accuracy and
effectiveness. Not only that, it also adds better scalability and utility for our system.

80

5.4.1.3. Color Classification

Another method that may help us greatly in distinguishing the fire from the background is
color classification. Color classification is a method to classify area of an image by its
color values. It can distinguish different color values, hues, and saturation. It is a simple
yet effective method to add into our system. Since our focus is forest fires, the fires should
have significantly different color from the other objects in the background including
possible other subjects like animals crossing by. Thus, we expect our system to be able
to provide better results by applying color classification as part of its identification process.
Adding color classification should further help in narrowing the computation time as well
as increase accuracy by providing better predictions of where the fire may be.

Compared to frame differencing, color classification may run into more ambiguous
detections, since forest may still have objects with similar color to the flame such as red
flowers, woods, and leaves. To avoid confusion between different objects, we plan to
focus on specific unique color that is most applicable to flames to increase accuracy.
However, choosing a specific value of color to detect fire as a threshold may become
tricky as it may increase false alarm rate or decrease predictions too much and lower the
accuracy overall with slight changes in the value.

But the application of color classification to our system should be much easier compared
to frame differencing. We could apply OpenCV’s color classification or dissect our images
into the RGB layers and focus on the R layer alone to help the model detect the fire.
OpenCV is a reliable library that provides color classification and shape detector. It also
has a package for Raspberry Pi. The figure below shows an example of color
classification and shape detector using OpenCV libraries alone. It computes the center of
the contour, perform shape detection and identification, and color labeling by taking
averages of a particular image region. However, the example is performed with small
complexity and we still need to perform this function to our own dataset or examples to
determine how much color classification of OpenCV is effective with our system and goal
of detecting fire. If it is not performing as well as we desire, we can create our own color
classifier by analyzing the L*a*b* color space or RGB and HSV layers. We are also aware
that the L*a*b* color space is better than RGB or HSV space as it has actual perceptual
meaning. But since we are focusing on forest fires. Looking at RGB and focusing on red
intensity may also work, possible better, for our system. We can also consider the
brightness and redness of an object as well.

81

Figure 57: Color Classification using OpenCV (OpenCV, 2020)

There are other researches that also implemented color classification in order to detect
fire. Figure 57 is an example of a research that utilized the color classification in order to
detect the fire. As you can see in the example, flame is within the predicted area using
the color classification. However, other objects such as wood or person are also detected
as false positives. In the research, they were able to minimize these false positives by
adding motion along with the color classification to narrow the predictions down.

Color classification may greatly be enhanced by adding other methods such as frame
differencing to minimize false positives by isolating objects that have motion and desired
color value. By doing so, leaves, trees, and structures may easily be distinguished from
the fire as it will not have as much of flickering movements as the flames will have. By
eliminating most of it, it should significantly help our system to learn or identify the flames
from others.

82

(a) (b)

(c)

Figure 58: Color of Fire Classification (True)

(a) original image (b) red denotes pixels that were classified as being the color of fire (c) color classification with motion

Since we are aiming to detect fire in a forest setting, these flames will be very
distinguishable compared to the other in terms of colors most of the times. Adjusting
different setting such as saturation and filters may also help in identifying the fire and
distinguish it from the rest of the background. We expect that combining color
classification along with motion detection (I.e. frame differencing) will help our model
increase its accuracy further.

We will start with a dataset or sample sets with no or least number of ambiguous objects
that may interfere with the identification of a flame. This is to test the effectiveness of color
classification and possibly along with motion detection either by frame differencing or
optical flow. Then, we will further test it with more ambiguous objects to validate the
accuracy and effectiveness of our system using color classification.

Color classification should be one of the optimal methods we can add to our system
because it does not require heavy computations and libraries are available to easily code
the method into our Raspberry Pi. We hope to see significant improvement by adding this

83

method on top of our machine learning models and possibly additional method to detect
motion.

5.4.1.4. Optical Flow

Another method to detect motion is using optical flow. This method can be implemented
using OpenCV [12]. Optical flow shows the vector or density of an object’s movement
between two consecutive frames. The dense optical flow in OpenCV uses Gunner
Farneback’s algorithm. In this method, the direction corresponds to hue value while the
magnitude corresponds to the value plane. An example output can be seen in the figure
below.

Figure 59: Dense Optical Flow (OpenCV, 2020)

Top image in the figure 59 is the original image while the bottom image shows the result
of dense optical flow via OpenCV. Optical flow is another method we consider
implementing as the other motion detector like frame differencing. Optical flow adds a bit
more complication than the frame differencing, but the available OpenCV library help us
implement this method with ease much like color classification. Which is one of the
reasons why we chose to add optical flow into our system.

84

By taking in consideration that the flames flicker in concentrated area and may spread
slowly, optical flow can best illustrate this dense movement in the sequence of images
and identify flame. This should be an easier implementation than frame differencing as
we would not need to add and experiment our own filters and thresholding for frame
differencing to work.

Optical flow also helps us distinguish other movements such as animals moving by
comparing the density and the vector of the movement. OpenCV optical flow seems to be
able to ignore the background noises which can help in not having leaves or trees as false
positives. Thus, this method is very effective in detection motion while identifying its
density and vector. Compared to color classification and frame differencing, this seems
more promising and easier to apply while capturing enough motion to detect the fire.

We can also use it to pre-determine whether there is a fire before sending it to the CNN.
We can provide threshold for the density of movement to determine if there is a possible
flame. The additional information of density and vectors may also help us have better
scalability in our system by providing additional information. This will help in having more
data and ways to inform our users about the situation of the forest better. We may be able
to detect other movements and information in addition to the sensor information we have.

5.4.1.5. Superpixel Localization

Another method we found interesting and effective to apply to our system is superpixel
localization. Instead of looking at the whole image, pixel by pixel, or by looking at bounding
boxes, we localize objects by segmenting the image into perceptually meaningful regions
similar in texture and color.

A research from Durham University (Dunnings & Breckon) shows how they were able to
effectively detect fire using superpixel localization and a network architecture with
reduced complexity. By using superpixel, they were able to increase accuracy without
adding complexity to the network architecture and with no temporal information. Their
research shows that using superpixel significantly outperformed other works in the non-
temporal fire detection.

Figure 60: Superpixel Localization from Durham University (Dunnings & Breckon)

85

This method is also available in GitHub created by Toby Breckon (Deshmukh, Breckon,
& Dunnings, 2019). He uses FireNet and InceptionV1-OnFireNet architecture shown in
the figures below along with the superpixel localization explained in the research. These
netowrks have binary detection architectures that determine whether an image frame
contains fire globally. However, by adding superpixel localization, it breaks down the
frame into segments and performs classification on each superpixel segment to provide
in-frame localization. The superpixel localization uses SLIC algorithm. For the best
performance and throughtput, use the FireNet model.

Figure 61: FireNet Architecture (Deshmukh, Breckon, & Dunnings, 2019)

If slightly lower false alarm rate is desired despite having lower throughtput, then use the
InceptionV1-OnFire model shown in the figure below.

Figure 62: InceptionV1-OnFireNet Architecture (Deshmukh, Breckon, & Dunnings, 2019)

An example output is shown in the figure below. As seen in the figrue, it was able to
successfully identify the fire in the given image by selecting the correct superpixel regions
associated to the fire.

86

Figure 63: : Implementation of Superpixel Localization with CNN (Deshmukh, Breckon, & Dunnings, 2019)

Left Image: Original image, Middle Image: Superpixel Localization, Right Image: Predicted Fire Regions (Green)

These models are available in pre-trained form using the dataset found in the Durham
Collections. Both models were able to achieve over 90% accuracy using that dataset
according to the Durham University’s research paper.
Thus, we believe that using superpixel localization may also help us improve our system.
We expect that this will provide much better results rather than using OpenCV shape
detector to identify the flame.
One of the other ways to utilize superpixel into our system is to use OpenCV just like color
classification. OpenCV provides three different algorithms we can choose from to perform
superpixel. They are SLIC, SLICO, and MSLIC as shown in the figure below. (OpenCV,
2020)

Figure 64: Superpixel Localization using OpenCV (OpenCV, 2020)

We thought that the superpixel localization was an interesting way to tackle our goal of
fire detection in forests without temporal information. We hope that by adding this method,
we will be able to lessen the computation needed from the networks while keeping the
accuracy high.

5.4.1.6. Original CNN (Convolutional Neural Network) Design

There are other available models out there but not much that are publicly available for us
to implement especially with our embedded system. To solve this problem, we can create
our own CNN architecture and train it to have the most optimal outcome out of all the

87

CNN we mentioned. However, this means finding a novel way in such short amount of
time with limited resources such as accessible GPU and datasets. This route seems very
impractical for our project considering there are already readily available CNN that may
fit fine with our goals.

Combining all these methods’ advantages, we may be able to create something novel
and much more effective system than what is out there. For example, combining faster
RCNN and YOLO may result in better model. Utilizing color classification and frame
differencing will also help in creating better accuracy for the model [10]. Or optical flow
with one of the generic object detectors may work fine as well. Another design we may
add to our model is changing its hyperparameters to optimize for detecting fires.
Reduction of latency is also possible by eliminating unnecessary features that come with
the pre-trained models and libraries such as classification and segmentation.

However, due to time constraint, we will most likely avoid creating our own model as it
will take time to design, program, train, and test the model. Tweaking the
hyperparameters alone would be tedious and take tremendous amount of time to find the
best values for the models to perform. In addition, it does not provide much scalability
and promising improvement.
Another option to ease the heavy computation usually brought from the models we will
test, we can create a much simpler CNN architecture concentrating on binary
classification and just identifying whether the fire exists or not. We can improve this model
by adding the other methods mentioned such as color classification or motion detector to
eliminate false positives in the early stage.

In considering making new CNN architecture, we have to keep in mind the time constraint
we have as well as processing limit of our embedded system. Further tests will be
necessary to determine if this route will be in further consideration to utilize in our system.

5.4.2. Neural Network Frameworks

Different frameworks exist to help with the implementation for neural networks. When
designing software around a neural network framework, it is important to discover the
differences in each framework. The strengths and weaknesses of each framework will
determine which framework is used for the project and how well it performs. We will also
take in consideration of which framework will be most optimal for the capacity of our
embedded system.

5.4.2.1. Keras

Keras is a high-level neural networks API, written in python. (Keras, n.d.) It allows easy
prototyping of a model and runs on both CPU and GPU. It is easy to use and beginner-
friendly, but it does not allow many modifications to the model like Pytorch does. There
are simple examples available online to test and create your own neural network
architecture quickly. There are some models such as Faster RCNN that are coded using

88

Keras. Keras can also accommodate to raspberry pi which makes Keras one of our top
frameworks to utilize.

5.4.2.2. PyTorch

PyTorch is an open source machine learning framework that excels in researching
prototyping and production. (PyTorch, n.d.) Pytorch is known to be harder to implement
than Keras, but it provides more flexibility and features. Most of the models available
publicly are coded using PyTorch as it is one of the top used frameworks when it comes
to machine learning researches as it offers fast and dynamic training.
Many industries also look for proficiency in this framework as they also use this as their
main framework. Understanding and being able to use PyTorch should be useful for us
in long term and a good skill to have. Knowing how to use this framework should indicate
that we have good understanding of machine learning.

5.4.2.3. TensorFlow/TensorFlow Lite

TensorFlow Lite is an open source deep learning framework for on-device inference.
(Abadi, et al., 2015) It is commonly used with the Raspberry Pi Zero. To implement deep
learning, we would need to install this to our MCU. Most of the tutorials we encountered
use this framework especially for Raspberry Pi. It is also most optimal for integrating AI
into a product. TensorFlow is also another well known framework similar to PyTorch that
many industries utilize. It is also beneficial for us to properly understand and know
TensorFlow just as much as PyTorch.

5.4.2.4. OpenCV

OpenCV is not a framework, but an open source computer vision library (OpenCV, 2020)
that has many computer vision applications that supports the mentioned frameworks such
as PyTorch or TensorFlow. OpenCV is the best choice among the others we mentioned
when utilizing CPU. This is because it has many libraries and models that are optimized
for CPU use. The models mentioned earlier can be implemented using OpenCV using
their pre-trained models. OpenCV has many libraries available for us to use and is popular
enough to have many resources to help us guide through the process. We would like to
first implement these pre-trained models available in OpenCV to test with Raspberry Pi
Zero and determine if we need to make improvements for the models.

5.4.3. Settings for Machine Learning
There are different options available in the setting up machine learning for our system.
For instance, the programming language we would like to learn and use, or the embedded
systems we have to choose from different types of Raspberry Pi. This subsection will
cover what we aim to use and the reasoning behind them.

5.4.3.1. Programing Languages

Most of the available models are in the Python, if not in C++. We will most likely conduct
our codes in Python, but we are also considering learning C++ when using OpenCV or

89

Pytorch. The reason we chose Python as primary is for the ease of use and because it is
widely used in computer vision applications. Thus, making tutorials and resources much
easier to acquire in Python compared to C++. The reason why we chose to consider C++
and would like to code using it is due to its demand in industries. Many industries and
positions require or prefer applicants with decent proficiencies in programming C++ as it
has become one of the standard languages to be used within software engineers.
However, due to the time restriction and ease of use, we will primarily use Python for
machine learning.

5.4.3.2. Hardware

We chose Raspberry Pi Zero to implement computer vision in our system. It has low cost
while providing decent amount of memory and speed for our system. Another system we
were considering was Raspberry Pi3. It was widely used and had several tutorials
available online to implement computer vision. However, it had much higher cost
compared to raspberry Zero. Furthermore, our system does not require the output to be
instantaneous. Our priority for our system’s goal is for it to be able to detect fire fast
enough to relay the message to other systems. Thus, we decided that the Raspberry Pi
Zero should sufficiently perform and meet our goals while saving us significant cost.

5.4.4. Dataset

For our model to have a good performance, it is optimal for us to train our models instead
of utilizing the pre-trained models available online. However, this requires us to create
our own dataset to train and test our models. Usually, a dataset would contain thousands
of images for the model to learn from. But due to time constraint and efficiency, we are
aiming to have about 400 images with the fire and 400 without a fire. We plan to combine
the images we took ourselves and images online to create this dataset. We may increase
the number of images if the model does not perform any better with other possible
adjustments such as its hyperparameters.
We can also find one of the datasets we found when looking for researches for fire
detection using computer vision which can be found on Durham Collections. It has a focus
on flames which would be ideal for our use.

However, we will prioritize implementing and improving the pre-trained models if it has
enough accuracy and results. With different methods and models, we may need to adjust
the dataset as well to include different types of fire. We may even need to add smoke as
part of our dataset to see if it can successfully detect and distinguish the fire and smoke
to alert regarding the forest fire. We may also add different subjects such as animals or
passerby to test how the system would distinguish them from fire and if it can detect the
fire with increased distractions. It is also important to keep in mind that the system may
be confused with objects that has similar colors as the fire such as leaves, woods, or
structures. It will be better if we could also include these types of sets and test it to our
system to see how it would effectively detect forest fire.

90

If we are creating a dataset, it would have different categories such as by noises (i.e.
similar colors, more obstructions), distances, or amount of flames (possibly including fire).
These can be expanded as we see how much our system can grow or may need to grow.
Our base would still be a dataset with fire and simple background with minimum noise to
test our system properly.

5.4.5. Summary of Machine Learning

Through looking at multiple existing researches regarding utilizing computer vision in fire
detection, we can safely assume that we can create and implement computer vision in
our system to detect fire in the forests. There will be many issues we have to tackle such
as processing limitation and memory capacity issue from our chosen embedded system,
and necessary adjustments to make our computer vision appropriate for forest
application. We will most likely need to improve existing models by re-training them or
adding other methods such as color classification, frame differencing, optical flow, or
superpixel localization to it.

To ensure we succeed in implementing computer vision into our system, we would like to
have a basic computer vision built using pre-trained models and open source libraries
such as OpenCV to know how they are effective in detecting fires. This is also to test how
fast Raspberry Pi Zero works with our setup. Then, we may use state machine for color
classification, frame differencing, or optical flow to have a threshold and detect fires.
Optical flow is our top method as it provides density of movement and direction to help
us distinguish the flames from other movements. If this is successful, we can add those
to our model. For instance, if one of the methods returns high threshold, then it should
send the image to the model. If the model also concludes that there is a high threshold of
a flame being detected, then fire should be detected and alert the other systems. This
should improve the accuracy of detecting fire compared to using the available object
detectors alone.

Our top choice for the pre-trained models would be the one with super pixel localization
as it is specifically trained with a dataset of fires in order to detect the fires. The main
issue we need to tackle when implementing this model is if we can make it work with the
Raspberry Pi Zero.

If time allows, we can create our own dataset and train the models using the images
through the methods (color classification, frame differencing, or optical flow). This will
allow our model to learn from a different perspective and be able to ignore the
unnecessary information (I.e. background). We expect that our model should then return
better accuracy. Further improvement can be done by adjusting the architecture or the
hyperparameters of the CNN. This is very experimental and needs time, but if successful,
we will have a novel way to detect fires in the forest.by adding superpixel localization, we
may create our own network without much complexity as the super pixel localization
works very well with such architecture.

91

6. Testing and Prototyping

Testing our hardware and software is almost as important as the project itself. To ensure
that everything is going to plan, we will make sure to test each component and subsystem
separately first and move on to more integrated testing as time goes on. This will, ideally,
cause our full prototype to be as functional as possible since all the bugs are worked out
on a smaller scale before integration. The first section below deals with the advancement
of our knowledge and experience with the subsystems to prepare for a final design. The
sections after deal with testing a semi-final and final design.

6.1. From Nothing to Something

All projects must begin from somewhere. There are a few subsystems that must work
together to complete the project: Power, Sensors, Network, Processing. This section
deals with the process of prototyping in preparation for a final design.

6.1.1. Power Subsystem

Nothing in the system will function without the Power Subsystem. The power subsystem
utilizes 3 different technologies to allow the full system to work. The first system that
needs to be designed is the power regulation. We have identified through research that
we will be using switching buck regulators for their efficiency. Energy lost to heat would
not be ideal in a battery system. The designs for the switching buck regulators will be built
onto a breadboard to prove they work, and a variety of expected voltages will be applied
to the input to ensure that it can give us the required output voltage. From this point some
calculations will be done to determine their efficiency and, using different loads, we will
attempt to prove that the required power can be supplied by the regulator.

After the regulator design is investigated, it is important to work on the battery design. We
simply need to prove that we can charge and discharge batteries. Our batteries and
battery charging circuit will be put together on a breadboard and we will attempt to charge
and discharge the batteries. Safety must be observed as the batteries are an energy
storage device. This proof of concept will prove that we can charge batteries and use
them. A few charge and discharge cycles will be observed to prove that the battery will
not deteriorate quickly over the course of only a few discharges.

In the end, the system is meant to be powered from a solar panel. A solar panel will be
used to generate some power from either the sun or a bright light. Use of the solar panel
will be investigated so we can become familiar with the characteristics of the device and
how it will affect our circuit. In the end, all three parts of this subsystem will be combined
with a simulated load such that we can see if the power system can support everything.
After testing this system a layout can be put together to put this system on a PCB and the
design for the mechanical support structure for the solar panels can be finished.

92

6.1.2. Sensor Subsystem

Testing the Sensor Subsystem will take place in two parts: retrieving sensor data reliably
and retrieving accurate data. To facilitate these tests, a Raspberry Pi will be used so that
the team can become familiar with the Raspberry Pi’s interface and operating system.
The goal of the first portion of testing is to investigate the ease of use of the sensors. A
sensor will be hooked up, on a breadboard, to power and all the supporting hardware will
be given to the device. Then, a Raspberry Pi will attempt to retrieve data from the device
through SPI or I2C. At first the result’s values will not matter; just that results exist. All of
the sensors will be tested this way until each sensor has been used enough to determine
its difficulty in using it. It is at this point that a sensor may be deemed too complex or
difficult to use and we may decide to use different sensors. This step is important to
determine what sensors will be used in the final product.

Finally, the sensors will be checked for accuracy. This may be determined with sensors
that we know are accurate (such as a carbon dioxide detector for gas) and our sensors
and see how close the values agree. For something like a smoke detector, we check to
see if the smoke detector can actually detect smoke (or something equivalent). We must
reach some level of accuracy with our sensors or else the system will not detect fires with
accuracy either. Lastly, if we have a camera, we will take some pictures and save them.
If the sensors’ data is not accurate enough or the pictures are not clear enough, then we
may have to investigate other options for different sensors and/or cameras. After testing
this system, a layout can be put together to put this system on a PCB and the design for
mounting the sensors and where everything must go can be completed.

6.1.3. Network Subsystem

Testing the Network Subsystem will consist of a few parts to ensure that the Network
software and hardware works all together. The first step will be programing some
development kits that use the SAMR34 as the processor. The development kit is the
SAMR34 Xplained Pro Evaluation Kit. The SAMR34 has a built in Semtech SX1276 LoRa
transceiver which will allow us to get a feel for the software and hardware requirements
since we plan to use the SAMR35 microcontroller. Using two of these evaluation kits,
software is written to send text to a screen when a button is pushed. This is important as
serial communication is planned to be the method of communication between the Network
Subsystem and the Processing subsystem. From there a program will be written to allow
a button push to turn on the built-in user LED on the other device. Ideally, the LoRa
protocol is used to complete this. This proof of concept step is important as it lays the
foundation to sending data over the LoRa based network. The final piece of testing that
will og into the development of the system is to have user input. The user will type a string
into a terminal that serially sends the data to the network controller. The network controller
will send this string to the other device and the other device will print this data to another
terminal. After this test, the software is ready to be developed for the mesh network
protocol since data can be transferred between the two evaluation kits. The evaluation
kits will be used to develop the software until the time functioning PCBs for the final
system are available for testing.

93

The next part of testing for the Network Subsystem is the internal timers and GPIO pins.
On a breadboard, the Network Subsystem will connect to a button, two LEDs, and a serial
terminal. Using the button, the network subsystem will turn on an LED and send data to
the terminal. This is to simulate the user’s input on the final system. The other LED will
blink based on a timer interrupt within the network controller. This will be used to simulate
the interrupt for turning on the Processing Subsystem. In the final system, a transistor or
solid-state relay could be used to allow power to get to the Raspberry Pi. The last part of
this testing will be to have data from the terminal saved to memory in the network
controller. When a specific sequence of characters arrives (as in a command) the network
controller will also turn on the LED and write a response to the terminal to simulate a
packet arriving and the network controller taking action based on a specific field in the
packet. This testing may or may not use LoRa to complete most of the tasks. After testing
this system, a layout can be put together to put this system on a PCB that is similar to the
evaluation kit so as to keep the RF characteristics consistent from testing.

6.1.4. Processing Subsystem

Testing the Processing Subsystem is important as this is the subsystem that determines
if a fire is in the area. There are three parts to developing the Processing Subsystem. To
test the Processing Subsystem, first, a Raspberry Pi must be set up with all the software
necessary to preform machine learning algorithms and run Python code. From there, the
Raspberry Pi runs through some sample images to test out the algorithms. The
subsystem, moreover, needs to have the training data loaded. This may be previously
collected data, our own training sets, or purely data retrieved from our sensors. The final
result will likely be training data that is a mix between all three. From this point on, the
machine learning parts of the subsystem will need to be fine-tuned to be able to detect a
fire with a decent level of accuracy. This “fine tuning” process will probably continue
throughout the project until it is complete.

The second part of prototyping and testing the Processing Subsystem will be the
interaction between the Processing Subsystem and the sensors. To go about testing this,
the sensors will be introduced into the system one at a time and we will ensure that the
connections between the raspberry pi and the sensors works appropriately. To verify this,
we may use a logic analyzer to see the signals sent to and from the Raspberry Pi and the
sensors. This testing is meant to focus on the software interaction between the Raspberry
Pi and the sensors, not that the sensors work.

This will have been tested in the sensor subsystem testing. Finally, the Raspberry Pi will
need to be tested with the Network Subsystem. Ideally, this is not a complex system. The
Raspberry Pi will attempt to send information to the Network Subsystem and vice versa.
This kind of testing will not focus on the software interacting correctly as in the final
system, although it could simulate it. The goal of this testing is to verify that we can send
messages reliably between the two devices. After testing this system, a layout can be put
together to put this system on a PCB with the mounting style for the Raspberry Pi as well
as the power control circuitry for the system. Some testing may go into ways to limit power

94

to the Raspberry Pi since it cannot turn on from being shut down without the power fully
turning off and then turning back on again.

6.2. Step-by-Step Hardware Test Plan

Without the hardware, the software cannot do its job. It is imperative that the hardware
operates on a reliable base for the software to be built upon so that the prototype functions
in all conditions: day, night, harsh weather, or perfect, clear skies. The following sections
discuss some of the step-by-step plans for testing the hardware components and why it
might be useful to do so.

6.2.1. Power

Stable power is the backbone to the entire circuit. Power is the only sure thing that a
circuit must have working to perform its function. To test the power systems a step-by-
step plan is introduced.

Step-by-step:

a. Set up all power supplies to the expected nominal voltage from our solar panels
and allow for as much current draw that is necessary

b. Test all power converters and regulators separately and measure their outputs.
Test them under the expected load of the system and make sure they perform.

c. Modify the load and map their efficiency to ensure proper operation.
d. Starve the converters and regulators of current and observe their effects on the

simulated load. Make note of the minimum current the converters and regulators
can maintain

e. Repeat the above steps for lower than nominal voltages and higher than nominal
voltages. Do not exceed the recommended highest voltage of each converter or
regulator.

f. Test different circuit protection techniques to help for overvoltage and overcurrent
conditions.

g. Set up the charging circuit for the batteries and give it nominal conditions for
charging and observe the effects.

h. Connect all the systems together, including power supply and load to get a fully
working power system.

i. Shift the power supply to a solar panel and test it with a bright light source and/or
sunlight.

6.2.2. Hardware Sensor Testing

Sensors will require hardware testing and software development discussed later in the
paper. Hardware testing of the sensor will include testing the physical capabilities of the
sensor. Some sensors have digital output and can output different digital protocols like
UART, I2C, or SPI. Others have analog and differential outputs which require and
amplifier and some other supporting circuitry. This means that it must function correctly,

95

or the software cannot determine what values are correct and what isn’t. Therefore, a
testing procedure must be put in place.
Step-by-step:

a. Power any sensors and see if they appear to function.
b. Establish connection between raspberry pi and sensors through I2C

communication to see if results can be read.
a. Create a circuit for the sensors and see if they respond to any external stimuli:

a. Gas sensors will be exposed to nearby smoke and fire to test detection of
organic gases.

b. NIR sensors will be exposed to nearby flames to detect infrared waves.
c. Thermal camera will be exposed to nearby flames to record fire and non-

fire data as explained in section 6.3.2 Computer Vision.
d. Smoke sensors will be exposed to nearby smoke to asses if the sensor

alarm is triggered.
c. Hardware testing will go through multiple trial and error runs with varying levels

of gas, smoke, and flame exposure to not only obtain raw data but also to test
the minimum and maximum capabilities of the sensor. Understanding the
minimum and maximum capabilities will help determine the distance range
between each device in the forest.

d. If the sensor is analog, check to see if the output falls within an expected and
acceptable range and ensure all the amplifier circuits are working correctly.

e. If the sensor is digital, write software to only read the result and try to get
meaningful data. Check to see if the output falls within an expected and
acceptable range.

f. Try to convert the sensor reading to meaningful “real world” values and ensure
they are acceptable for real world scenarios (especially the current scenario the
sensor is in).

g. Provide the data to machine learning engineer to use for algorithm development.

6.2.3. Controllers

Testing the controllers is important since these pieces of hardware will control everything.
Each system has its own set of requirements, however.

6.2.3.1. Raspberry Pi

The Raspberry Pi is a computer with a very small footprint. Since it runs a distribution of
Linux, we should ensure that the Raspberry Pi can boot properly and can run software.

The test procedure is step-by-step as follows:

a. Boot into the Raspberry Pi operating system and interact with the terminal
b. Write some software to toggle GPIO pins, maybe to turn on and off an LED
c. Record power usage under idle and stressed conditions
d. Output SPI, I2C, and/or UART with the Raspberry Pi.

96

e. Using one of the voltage regulators in the Power subsystem, power the raspberry
pi from that instead of the normal USB power (using pins 2 or 4 on the header
pins). Repeat the following steps to ensure everything is working.

6.2.3.2. SAMR35

The SAMR35 is a full-on embedded microcontroller. As such, it does not use an operating
system (unless one is uploaded onto it). For hardware testing, a simple plan can be put
in place to test the different possibly required peripherals and ensure the chip is working
correctly.

Step-by-step:

a. Program the chip to toggle a GPIO pin, possibly turning on and off an LED. Use
delays based on timer interrupts if possible

b. Program the chip to output SPI, I2C, and/or UART
c. Record power usage under idle and stressed conditions
d. Using one of the voltage regulators in the Power subsystem, power the chip from

that instead of a power supply
e. If using a Real Time Operating System, schedule two jobs to run concurrently

and see how they interact. Using an oscilloscope see the delay between the two
jobs if running concurrently.

f. Test RF capabilities if applicable/possible.

6.2.4. Radio Frequencies

Testing RF designs can be challenging. Testing this assumes that the SAMR35 has been
tested and that some software has been written to interact with the LoRa peripherals.

Step-by-step:

a. Program the chip to send out data whether it be FSK or LoRa.
b. Watch a spectrum analyzer to see if that data is being transmitted in the air and

if it is being transmitted properly
c. Take two devices and attempt simple communication, possibly light an LED on

received data. Attempt to transmit larger packets as well like strings. Investigate
streaming data.

d. Range test: With a working simple communication test, do some tests in different
environments with range. Some ideas include: Line-of-Sight, in or around
buildings/urban environments, wooded/forest environments. See how the range
is affected. Measure results every 100-200m and expand until range is
compromised.

97

6.3. Step-by-Step Software Test Plan

Software is an important and critical piece of the prototype and must be done correctly to
determine if there is a fire. Thus, proper testing of the software is important. The following
sections outline step-by-step plans to testing the software components and why it might
be useful to do so.

6.3.1. Connection Between the Hardware and Software

The hardware and software must work together to have a working prototype. To make
sure this is the case, simple software will be written to make the hardware do what we
want or similar. This will allow us to see if the implementation and ideas we have are
feasible or if they are just not quite what we need to do. These small, simple programs
will allow us to see what is going on and later on expand their complexity into a full-scale
prototype.

6.3.2. Software Development for Sensors from Hardware Testing

The sensors play an important role in the process of determining if there is a fire.
Computer vision method is one option and will be discussed further in the paper; however,
the other sensors can provide us with more confidence that there is, indeed, a fire. The
sensors can be used to add more data and possibly, if done correctly, may be able to
provide insight about the type of fire or what is burning. Sensor operation is depicted in
the diagram of figure 64.

Step-by-step:

a. Write simple software to interact with the sensors and get raw data.
b. Obtain the data from hardware sensor testing data and see if that data can be

made useful by mapping it to “real world” value.
c. Train the machine to establish fire and non-fire conditions by analyzing smoke,

gas, and flame characteristics.
d. Complete software that will read the sensors and determine the possibility of a

fire condition.

6.3.3. Computer Vision

One way to detect and identify fire is using computer vision and machine learning. There
is much research done in creating different neural network architectures and methods to
best identify flames. These can be done with minimal to no temporal information which
helps our system to avoid heavy computations.
Without the processing subsystem: we can test the computer vision software using our
webcam. We can run a real-time object detection using our computers and test to see
how well it would detect different types of fires in forest especially the minor and small
ones. Since there will be adjustments needed to accommodate to our processing
subsystem, we will only test the pre-trained models and simple methods such as frame

98

differencing, color classification, or optical flow in real-time. By doing so, we can ensure
that our code is properly constructed and should return proper results when transferred.
By having simple tests for the models and methods, we can find the accuracy appropriate
for detecting fire in the forest.

To do so, we would need to perform simple test runs multiple times and document the
results for each models and methods. These test runs will follow just like the general
diagrams below. The model will receive an image and process it to output its result. Then,
the accuracy will be calculated by comparing its output to the ground truth.

Figure 65: General diagram for testing models such as YOLO and Faster RCNN

Although the models may differ significantly from each other, the testing plan should be
very similar to each other. For each model, there will be testing procedure we will follow
which is illustrated in the diagram below.

Figure 66: General software flow of the object detector through a model

99

After running a model, it should return an output (i.e. predictions feature map) containing
information such as the location of bounding boxes of the objects, class score, and
confidence score. Using the information, we will determine if there is a fire. Thresholding
the confidence score and including an array of acceptable classes will most likely be
needed to detect the fire properly. This is also another experimental situation where we
will need multiple runs to determine the values and appropriate thresholding. We would
also like to avoid constantly running the model unnecessarily, so we need to incorporate
an ability for it to wait and turn on again when needed. It will also need to turn off after
sending the results to other systems. We would also need to ensure that the model will
work properly once it is turned on again. To test this using without the processing
subsystem, we need to add a function to turn off after outputting prediction.
In addition to the model, we will be adding another method such as color classification or
optical flow to help our model determine if there is a fire. By having this extra step, we are
hoping to achieve better accuracy while helping the system lighten its average processing
time.

Testing these methods will have similar construction to testing the models. We will run a
method on a given image. Then, it should output its results. And from there we calculate
the accuracy of the method by comparing it to the ground truth. We will test these methods
individually, just like the models, and then compare the results to each other to see how
effective each method is. Ultimately, we would like to also have a comparison of
combinations of different methods to see how we can successfully construct these
methods to produce best results.

Figure 67: General diagram for testing methods such as color classification and optical flow

We are planning to test three different methods which are frame differencing, color
classification, optical flow, and super pixel localization. These tests should mostly follow
simple steps as illustrated in the figure above.

Since each method is unique, we would need to perform these tests slightly different from
each other. Specifically, applying superpixel localization to other models may get tricky
as we need to accommodate the models to read by meaningful segments instead of
bounding boxes or per pixels. Thus, we may not test the superpixel by itself if time seems
limited. However, there is already a model publicly available through GitHub that performs
superpixel localization with a neural network which we can test similar to how we test
other neural networks such as YOLO.
One of the methods, frame differencing, can be done by subtracting the frames to obtain
a new image. To test how this will help our system achieve better accuracy, we will need
to perform frame differencing along with filters and additional methods to identify an object

100

through the difference image. Filters such as blurring and normalizing can help isolate the
object from the background noises.

Figure 68: Diagram for frame differencing

To test the frame differencing properly, we would need to output the subtracted image to
ensure it is correctly done. We would also need to compare the filters and see which ones
will give the highest accuracy. By using shapes or other detectors, we may be able to
detect fires through these subtracted images without the help of a neural network.
Another method we would like to test is color classification. Since our system is
specialized in detecting fires in the forest, the fire itself should have a distinguishable color
difference compared to the background (woods, grass, etc.). We can utilize this difference
by applying color classification in our system to identify where there is an intensity in the
colors similar to flames.

101

To apply color classification into our system, we would need to focus on identifying red
colors in the image. Then, isolate them from the background. We can use shape or other
object detector like grouping in order to identify object in the image. Then, we can focus
on the area with high intensity of red instead of looking over the whole image. Color
classification itself can be done using OpenCV as well as the detectors such as shapes.

Figure 69: Diagram for color classification

There are different ways we can apply color classification by looking at different spaces
such as RGB and HSV. We believe that focusing on RGB should be enough to be able
to distinguish flames using color classification, but we have yet to test it using our system.
We should have a better idea of this once we gather more data and images that the
system will more likely encounter.

Last method we would like to incorporate is optical flow. Similar to color classification,
optical flow can be implemented using OpenCV. We can use it to identify an area with the
densest movement and isolate that from the background. And then have a detector to
help identify if the detected object is a fire. The basic flow of the optical flow is illustrated
in the diagram below.

102

Figure 70: Diagram for optical flow

We should test the optical flow with few example sets in order to ensure optical flow is
being applied properly. We also need to ensure that optical flow is appropriate for
detecting fires using OpenCV. We expect it to work well with easy implementation.

The three methods mentioned previously (frame differencing, color classification, and
optical flow) can help isolate and help the model identify the flame. After ensuring each
method works properly, we can implement it to work with the selected neural network to
produce better results. We can apply thresholding to identify if an isolation of an object
happened after applying these methods. Then we can crop the image to focus on the
suspected fire object and send it to the model. By doing so, we would reduce the amount
of computation needed while decreasing other distraction for the model to make false
positives. Object detectors also tend to work better with larger or focused object in the
image. We expect that by combining methods and models should return better accuracy
than running a pre-trained model alone.

We would also like to add superpixel localization to our system if possible. This is a way
to segment the image in a meaningful way to make it easier to identify fire with reduced
complexity of neural network architecture. This may help in reducing the heavy
computation compared to other models we discussed. It can also make it easier to isolate
the detected fire before sending it to the neural network.There will be three stages of
testing this method if we decide to utilize it to different models or our own neural network.

103

This method will have slightly different formatting of test plan as it is a way to segment
whole image and not a color or motion detector.

Figure 71: Diagram for Testing Superpixel Localization 1

The first stage in testing superpixel localization is to make sure the function works properly
and segments the image correctly. We would need to verify this by running it through
different example sets and images. Then, we would manually check if the segmentation
was successful or not. We need to ensure that the segmentation is effective around the
flame. These steps are illustrated in the diagram above.

Figure 72: Diagram for Testing Superpixel Localization 2

The second stage of testing superpixel localization is to use the localization and rate how
successful it segmented the objects especially flames. This is important for us to verify in
order to help the model identify the flame effectively. If the localization was not successful,
then there is not much benefit in applying and performing extra computations for our
system. Based on the examples provided in OpenCV, it seems very reliable and we
expect high accuracy of it segmenting the objects.

104

Figure 73: Diagram for Testing Superpixel Localization 3

The final stage would be incorporating it with a neural network to verify if the fire is
detected within that segmentation as seen in the diagram above. After verifying the
superpixel localization, we could further apply color classification, frame differencing, or
optical flow to further narrow down the image before sending it to the network. By doing
so, it will greatly help the model learn and identify the flame. Segmentation may help in
properly encompassing the flame instead of approximately applying bounding boxes or
using shape detector.

By having these methods, we can effectively eliminate unnecessarily processing by the
neural network while achieving high accuracy. We would also need to manually verify the
results of each one and calculate the accuracy in order to compare and choose which
method is the best fitted for our system.

After comparing the results through these tests, we would like to combine different models
and methods together into one system as shown in the diagram below.

105

Figure 74: Diagram illustrating combining the method and model into one system of machine learning

By doing so as illustrated in the diagram, we should be able to achieve better accuracy.
We can also combine multiple methods or models together and cascade them into the
system.

With the processing subsystem: we can run the previously tested models or methods and
see how the results may differ. By doing so, we can compare how the accuracy may
change due to specification differences such as camera. It is also crucial to check the
difference in time as Raspberry Pi Zero has lower processing power. If the software
returns passing performance with our system, then we may further improve our system
by testing the other models and methods.

To set up the processing subsystem, we will need camera along with the board to capture
an image. We can set up LED light or communication monitor between the board and
computer to monitor the output of the board and see if it is properly receiving inputs. We
also need to ensure that the camera is working properly by outputting the captured image
to a monitor. Then, we can run the model or methods to see if it is functioning properly.
We can set it up so that the board will respond if there is a fire detected and notify the
system. For instance, having the LED light up when the fire is detected and off when the
fire is not present. We can also use the communication monitor to do similar process. We
can set it up so that the board will respond if there is a fire detected and notify the system.
For instance, having the LED light u

One of the hardest hurdles in applying this to our processing subsystem is
accommodating the code to fit with the function of our embedded system as some may
be limited and not applicable. We need to have functioning machine learning and
computer vision applied to our embedded system while keeping the best accuracy as
possible with best speed possible. If the current system cannot handle the computations
or consume too much time to produce results, then we are also considering upgrading
the system to Raspberry Pi 3 as it can handle more memory and more processing than
Raspberry Pi Zero.
Step-by-step:

a. Code in computer to test the available pretrained models from YOLOv3.

106

b. Code in computer to test the optical flow using OpenCV
c. Record the processing time and accuracy. How accurate did YOLOv3 detect and

optical flow to detect (have most density in flame).
d. Transfer the code to the Raspberry Pi and test after installing necessary libraries

and adjusting the code to accommodate our MCU
e. Record the processing time and accuracy
f. Compare the results from computer and Raspberry Pi Zero. If they are not similar

or significantly different, then we may have an issue with the code.
g. Repeat with different models and methods to compare results from each other

Or choose to have a method to pre-determine if there is a flame and then pass it
on to a model to determine if there is a fire. This combines and considers the
thresholds from both methods and models to determine the flame instead of
reading two different outputs. We expect the accuracy to increase by combining
them in such way.

6.3.4. Networking

The network hardware can be tested in a step-by-step procedure. First we start by
sending simple strings between the devices. Once we can send strings, we can worry
about meaningful strings and possibly streaming data.

Step-by-step:

a. Code in a computer to test the methodology
b. Code in a computer to test the flow
c. Program the microcontroller with a simple script to broadcast a string
d. Program a different microcontroller to continuously receive all broadcasts
e. Program the two to recognize each other’s unique ID and attempt to create a

network where they can communicate with each other.
f. Implement a blacklist so that close-range demonstrations can be made.
g. Refine the software so that three or more units can be used to demonstrate their

feasibility.

6.4. Testing Environment

In order to test the system, it will require to be in a place that has three conditions. The
first one is direct line of sight testing which means it has to have large empty spaces half
a mile to a mile long to for the best-case scenario. The following environments are
potential testing environments.

Remote at home testing:
Prior to selecting the final components used for the final prototype, each of us will
purchase the components we believe would be most suited for the project based on our
individual background research. This will include each peer purchasing a raspberry pi,
SD card, DC power source as well as the components we are responsible for in the
project. This process will also include downloading any relevant software applications and
becoming familiar with the chosen programming language, python.

107

During at home testing, the peer will attempt to test their components in a controlled
environment. The sensors will be tested using a lighter to test for flame and gas. Smoke
signals will be tested by burning wood and placing the sensors near the fire. This will also
be necessary for calibrating certain sensors. The thermal camera will be tested in front of
fire and non-fire conditions to generate data that will be used for machine learning. This
dataset will be used to train the system and produce a model that can attempt to identify
a fire and look at the conditions for future predictions. The LoRa module will be tested by
attempting to establish communication with at least two devices to see if data can be sent
and received. The solar panel system can be tested at home to observe and understand
its ideal positioning for maximum sunlight absorption.

On campus testing:

UCF Arboretum
The University of Central Florida has an arboretum that acts as a creative learning
environment. The arboretum includes a 5-acre Cypress dome, an oak hammock of 3-
acres, and 15 acres of sand pine and Florida scrub connected to the original Arboretum
by the saw palmetto community and the longleaf pine flatwoods. Currently the entire area
of the arboretum includes 82 acres (LEE, 2020). The UCF arboretum has the landscape
and environment for potential forest fires. Thus, it would be ideal to create a controlled
fire in this space and determine if the sensors are able to detect fires. Moreover, testing
in this environment will allow us to experiment with various mechanical designs and
understand which design is best suited for this project. In addition, we would also like to
understand where is the best placement of the devices on the tress: how close to the
earth can the sensors be placed in order for it to be close enough to detect the gas, fire,
and smoke without interrupting the natural environment and wildlife. Lastly, we would also
like to test the range of the devices using the LoRa module. We would test the devices at
10m, 50m, 100m, and 150m apart to observe if the communication and data transmission
is still maintained. Moreover, we would also want to investigate how close the sensors
should be for effective fire detection.

Testing in this area will require permission from the UCF college of engineering
department and the UCF facilities and safety department. In the event the project is ahead
of schedule, we are also open to the possibility of testing the F.I.R.E device in a controlled
fire that is routinely done by UCF Facilities and Safety team as a prevention mechanism
for forest fires. The UCF arboretum would be the ideal testing environment since it is used
by students from other colleges for educational purposes.

108

7. System Integration
7.1. System Design

An overall glance at the system shows the solar array hooked up to a voltage regulator
which will output 12 volts and a max of 2 amps with the input from the array. That will then
be feed into a Li-ion IC to handle the charging and battery health. That battery will then,
with help from excess power from the solar panel, be inputted into two buck-boost
converters to make a 5 volt and 3.3-volt rail. These two rails will handle power to the entire
system as some components require specific voltages. The 5-volt rail will run the LoRa
module and the Raspberry Pi and this rail will pull the most power out of the system due
to how much power a Raspberry Pi requires. The 3.3-volt rail will handle powering all the
sensors and will pull less power.

Figure 75: Controlled fire at the UCF Arboretum (LEE, 2020)

109

Figure 76: High Level System View

7.1.1. Sub-System Connections

Each system must have all the connections necessary to communicate properly between
each other but inside each system there are smaller components that need their own
source of power or need to be connected to the same node as another system for
grounding or the correct resistive purposes. To make sure everything is wired correctly
the sub-systems were designed using KiCAD’s hierarchical sheet system. Each
component was individually designed and linked together using this hierarchy structure,
so the overall design didn’t get to cluttered or large to view and edit. Doing the designs
like this also helped with making sure everything was wired correctly in the final assembly
of the system.

7.2. System Operation

The system will operate in a cyclic fashion turning on to cycle through all the sensors to
check if there is a fire under certain conditions. It will then process that information using
computer vison on the Raspberry Pi for the infrared array and use state-space to store
and check if the other sensors are within their constraints. This is depicted in the diagram
below. If everything is determined to be fine, then the machine will go back into a sleep
mode and wait for its timer to turn itself back on and run through the same process. If the
system runs through all its checks and determines that there is a fire The LoRa module
will then be booted up and that data will be transmitted in a mesh network until it gets to
an operator who is monitoring the overall system. That operator can then check what
determined that fire and decide with human intervention if it is a false alarm or if they need
to respond by the measures deemed necessary.

110

Figure 77: Sensors data sent to processor

8. Administrative Content

The following section is a discussion of the administrative content that comes from a
project. Included will be the division of work, milestones and timelines, information about
our sponsor work for Siemens and our cost.

8.1. Division of Labor

The project was divided into multi sub-parts for each team member to work on and
specialize. Each subject is not mutually exclusive however, as the team is expected to
help the others in their designs and research. Table 9 goes into what each team member
was assigned to accomplish as well as a list that breaks down a little more about what
that team member is doing specifically. Table 10 provides a detailed description.
Table 12: Division of Labor

 Area Focus

Noora Sensors Hardware

Nicholas Power & Mechanical Hardware

Jonathan Control & RF Hardware & Software

Arisa Data Processing Software

Table 13: Division of Labor Breakdown

111

Engineering
student

System components Description

Noora

Flame Sensors:
Near Infrared, Camera
Smoke Sensors.
Gas sensors
Temperature/Humidity
sensors

Noora will focus on designing the printed circuit board
which will include selecting appropriate sensors
components and ensuring these sensors are able to
detect fire elements such as flame, smoke, and volatile
organic compounds, as well as communicate with the
raspberry pi. Noora will work closely with Arisa to send
raw data for data analytics and processing.

Nicholas

Solar Panel Power
Battery Charging
Protection.
Power Regulation

Nicholas will be responsible for designing printed
circuit board that will be used for supplying power to
the entire system. The system will be powered by a
solar panel system. Nicholas will choose appropriate
solar panels that will efficiently supply enough power
to the system; this will include selecting the right type,
model, and size of panels. Subsystems will need a
3.3V and 5V supply, thus Nicholas will design the PCB
with appropriate regulators and rails to ensure the
components received ample and stable power supply.

Jonathan
Microcontroller Design
Network Software
RF Design

Jonathan will be working on the communication
between the devices. This will be done through radio
frequency using the LoRa RF module. Jonathan will
design the system to ensure communication between
the devices is maintained and data from sensors can
be sent to the hub using RF waves. Jonathan will test
the range of the system for which data can be sent and
design the communication network of the system.

Arisa

Sensor Data
Processing Software
Machine Learning’
Raspberry Pi

Arisa will be responsible for interpreting the data
coming from the sensors through the raspberry pi. By
recording and analyzing the raw data from the sensors,
Arisa will be able to train the machine to recognize fire
and non-fire conditions using an algorithm. This
algorithm will determine forest fire conditions and
recognize all characteristics of fire such as flame,
smoke, and VOC gasses. The signal will be sent to the
microcontroller to trigger the alarm.

112

8.2. Project Milestones

The following two tables provide the target milestones. Table 9 is the intended timeline
for the spring 2020 semester. During this semester, the background research on the
project’s need, standards, requirements, hardware components, mechanisms of
detection, testing environment, sponsor requirements, logistics, feasibility is examined
through the senior design 1 report. Each peer’s strengths and weaknesses are identified
to be understand how each individual can contribute to the project. Moreover, areas that
can be challenged and improved were also identified. Once this was recognized,
assigning the project tasks and requirement to each peer became a natural and organic
process. By the end of the spring semester, the group and the sponsor will have a
reasonable understand of the project’s scope so that the prototyping stage can begin.

Table 14: Spring 2020 Milestones

Week Milestone (Tasks) Start Date Deadline

1 to 2 Brainstorm ideas January 06, 2020 January 17,
2020

3 to 4 Choose a project and discuss
basic design and roles

January 20, 2020 January 31,
2020

4 Finish Divide and Conquer V1 January 31,
2020

5 Discuss the details of the project
(components, functions, design)

February 03, 2020 February 07,
2020

5 to 6 Update Divide and Conquer V2
Finish proposal for sponsor

February 03, 2020 February 14,
2020

6 to 9 Research and fine-tune design February 17, 2020 March 06,2020

9 SPRING BREAK

10 60-page Draft March 20, 2020

10 to 12 Finalize design
Finish technical documentation

March 16, 2020 April 03, 2020

12 100-page Report April 03, 2020

12 to 15 Organize all documentations
Acquire materials and
components for prototype

April 06, 2020 April 17, 2020

15 Submit Final Documentation April 21, 2020

113

Table 10 below shows the milestones for the summer 2020 semester. Summer is an
accelerated semester with 4 weeks less than the other semesters. This leaves less
opportunity for errors. As a result, after completing a robust report, the summer semester
marks the beginning of the projects prototyping, testing, and implementation stage. The
aim is to complete fulfilling the project’s intended purpose by July 31st. This final product,
as well as electrical and CAD designs will be handed off to the sponsor. Moreover, the
senior design 1 paper will be modified to reflect the project’s realistic achievements.

Table 15: Summer 2020 Milestones

Week Milestone (Tasks) Start Date Deadline

1 to 2 Assemble/ Build prototype
Test components

May 11, 2020 May 22, 2020

3 Acquire components for final
product
Adjust documentation

May 25, 2020 May 29, 2020

4 Build final product’s architecture June 01, 2020 June 05, 2020

5 to 6 Integration Testing (hardware
and software)

June 08, 2020 June 19, 2020

6 to 7 Make necessary adjustments June 22, 2020 July 3, 2020

8 Final testing July 6, 2020 July 10, 2020

9 Finalize product July 13, 2020 July 17, 2020

10 to 11 Finalize documentation July 20, 2020 July 31, 2020

11 Final Product July 31, 2020

8.3. Sponsor Information
8.3.1. Siemens Foundation

Siemens Foundation was founded in 1998 as a non-profit organization in the United
States (Siemens STEM Day, n.d.). The foundation has invested more than $122 million
in the United States to foster an inclusive and innovative culture through a variety of
professional developments programs for the Siemens workforce, STEM outreach
activities for youth, and scholarships for future students (Siemens STEM Day, n.d.).

114

The most notable program is Siemens STEM day which initially was an event dedicated
to engaging K-12 students in a variety of hands-on activities through experiments and
problem-solving exercises. Currently the program has expanded past a one-time event
to a portal that provides employees access to over 150 STEM activities allowing Siemens
volunteers to facilitate STEM day activities any time of the year in addition to STEM day
(Siemens STEM Day, n.d.). These activities range from easy to difficult and revolve
around themes popular in the industry. The STEM kits target students of all ages,
however, there is currently a demand for activities that target older students to emphasize
various applications of scientific knowledge in real life, especially in disciplines that are
needed in the US. Facilitating these activities is important when considering the demand
for STEM professionals and closing the opportunity gap for the youth.

8.3.2. A Product for Siemens STEM Initiative

Ultimately, the F.I.R.E device will not only serve its purpose of forest fire and detection
and monitoring, but also will be meticulously designed keeping in mind that the product
will serve as an introduction to electrical engineering kit. Through this kit, students will
become exposed to sensor technology, programming and communication through mesh
network, and an optional hands-on experience soldering parts to a printed circuit board.
The importance of engaging the youth in STEM related activities has gained traction due
to the decline in the overall number of students pursuing STEM fields. Thus, exposing

Figure 78: 30+ Years of Academic Partnership Between Siemens & UCF to foster the goals of Siemens
Foundation (Siemens STEM Day, n.d.)

115

STEM opportunities to young students, especially to students from marginalized groups,
is important in encouraging and fostering a culture of innovation, research, and diversity.
SIEMENS’ STEM initiative is founded on these values. Thus, this product will be designed
to be used in SIEMENS STEM Day activities to expose students to fundamental concepts
of electrical engineering and importance of environmental consciousness.

The product is aimed to be utilized as an advanced activity for students ideally between
the 9 – 12th grade that are in the early stages of exploring and deciding career options to
pursue after completing high school. This project will help introduce and educate students
on a leading environmental issue, forest fires, while also demonstrating how electrical
engineering concepts can be used to solve a growing environmental concern. Moreover,
students will also learn about the fire and gas sensors that are used for SIEMENS gas
turbines and how their function compares with the sensors designed in the kit. Overall,
students will gain an understanding of how the system was designed, and how it can be
implemented. This learning kit will also be a unique exposure to engineering project
management and execution.

The objectives of the activity are detailed below:

1. Understanding forest fires, their growing intensity, and how fire emissions are

shaping climate change.
2. Solving this issue by providing proactive solutions to mitigate the risks.
3. Understanding the technology used to tackle the issue:

a. Flame detection (visual and non-visual techniques)
b. Gas detection
c. Smoke detection through photoelectric sensors

4. [Optional] Soldering basic components to a printed circuit board.
5. Straightforward programming exercise understanding how values are read and

communicated in a network.
6. Testing the device and witnessing how it can react to a fire.

At the completion of the project, the final product will be delivered to SIEMENS’ STEM
initiative group with a detailed lesson activity guide for Siemens employers to use for
STEM day activities. In addition, the printed circuit board schematic and design, as well
as any CAD design, will also be provided so that additional boards can be produced for
enhanced learning activity that incorporates soldering components to the printed circuit
board.

116

8.3.3. Connection to the Siemens industry

A significant portion of the project’s requirement and the sponsorship from Siemens is not
only supporting our aspirations of designing this system but also emphasizing how the
product connects to the Siemens industry in terms of the similarities in the technology
and strategies used, as well as the potential opportunity for Siemens to utilize this product
in their industry.

Siemens AG headquarter is in Munich, Germany (Siemens STEM Day, n.d.). It is a
multinational conglomerate and considered to be one of the largest industrial
manufacturing companies in Europe. The main industries it is involved in are: Energy,
Healthcare, and Infrastructure. The Siemens offices in Orlando, FL are primarily focused
on power generation, energy efficient buildings and infrastructure, wind energy, and
healthcare (Siemens STEM Day, n.d.). Its proximity to the University of Central Florida
has enabled a partnership allowing for $10 million in investment for research projects at
the university such the Digital Grid Innovation Laboratory, Center of Innovation for
Diagnostics & Prognostics, and the Siemens Energy Center (Siemens STEM Day, n.d.).

8.3.3.1. Gas Turbine

Siemens’ gas turbine manufacturing and commissioning is one of the dominating
businesses in Orlando, FL. Siemens gas turbines range from 4 – 593 MW and are used
for a variety of applications including power generation for utilities, independent power
producers, oil and gas as well as industrial users such as chemicals, pulp and paper, food
and beverage, sugar, automotive, metal working, mining, cement, wood processing, and

Figure 79: Overview of Siemens gas turbines (Siemens, 2019)

117

textiles. Siemens gas turbines fall into one of three categories: heavy-duty, industrial, or
aeroderivative (Siemens, 2019; Nancy H Ulerich, 2013).

The primary components of the gas turbine using the Brayton cycle is a compressor,
combustion chamber, gas turbine, and generator as depicted below. Siemens gas turbine
control system includes a variety of instruments used to measure the gas turbines
temperature, pressure, speed, and vibration. The main interest for this project will be the
temperature sensing of the system for fire and smoke detection. Current temperature
sensing for the gas turbines includes a gas thermocouple and the infrared temperature
sensor (Isiadinso, 2015; RAITHATHA, 2013).

A thermocouple is composed of two dissimilar metals connected together creating a
junction through welding. (Isiadinso, 2015) One end of the connection is taken for
reference and other end of the junction is used for measurement (Isiadinso, 2015).
Temperature measurement is possible when there is temperature difference between the
two junctions; this causes an electric current to flow in the circuit (Isiadinso, 2015). By
understanding voltage-temperature relationships of metal combination, the temperature
can be measured (Isiadinso, 2015). There are many types of thermocouples; however,
type K thermocouple is commonly used in gas turbines. Siemens SGT-A05 KC uses the
Measured Gas Temperature (MGT) thermocouple to extend the in-service life of the
turbine and it is also used in 180 other engines Pictured below is the MGT thermocouple
(Siemens AG, 2019). The SGT-A05 KB/KH also uses the TOT Thermocouple or the TIT

Figure 81: Thermocouple used in Siemens SGT (Siemens AG, 2019)

Figure 80: Typical gas turbine cycle as stated in (Isiadinso, 2015), the figure shows where a fire and gas sensor
would be needed.

118

thermocouple to improve overall accuracy in temperature monitoring (Siemens AG,
2019).
Infrared temperature sensors are a good option to use to minimize the contact between
the sensor and the object it is measuring, which for gas turbines is the blade. Infrared
sensors function by “focusing the object’s infrared energy onto photodetectors” (Isiadinso,
2015).
This provides an electrical output signal that is proportional the infrared energy received.
The infrared energy emits varying levels of infrared energy to the object according the
temperature which allows for an accurate description of the object’s temperature
(Isiadinso, 2015). Siemens SGT-750 uses infrared cameras to measure the temperature
of the blade surface (Isiadinso, 2015). Temperature is recorded each rotation and is used
for the cooling system (Isiadinso, 2015). Below is an image of the infrared temperature
sensor used in the SGT-750.

Project F.I.R.E utilizes similar techniques used in the Siemens gas turbine for fire and
smoke detection. Siemens uses a thermocouple which is a typical choice for a higher
scale, range, and accuracy for heavy industrial applications. In our project, a temperature
sensor IC will be utilized since it will help drive the cost and size down for forest fire

Figure 82: Infrared temperature sensor used in the SGT-750 (Isiadinso, 2015).

119

applications. The IR sensor is comparable to the flame detection technique F.I.R.E as it
involves detecting hidden infrared rays to measure thermal heat of the gas turbine blades.

8.3.3.2. Digitalization/Internet of Things

A growing field in the industry is the digitalization of many products results in a demand
for the Internet of Things (IoT). Siemens offers IoT services ranging from Consulting,
Solution Design, and Solution Development and Implementation which all includes
Change Management and Cyber Security (Siemens, 2019). There are five phases that
Siemens uses for successful IoT implementation detailed below in the diagram (Siemens,
2019).

IoT as discussed previously in this paper has the potential to digitalize many industries
including manufacturing, energy utilities, healthcare, transportation and building
technologies, which are the industries Siemens is mostly tied to. Before the users can
benefit from the insights of IoT, data must be collected and sent through a gateway data
communication (Siemens, 2019). The data is then transferred and stored where it can be
used to conduct data analytics and conduct machine learning algorithms (Siemens,
2019). From here, it can be used to provide insight for efficiency and create better
business models (Siemens, 2019).

Siemens has been heavily involved in IoT as the possibilities of improving business and
performance for the industries it is involved in are endless. For example, Siemens was
involved in an air quality monitoring system in the city of Nuremberg. Nuremberg city

Figure 83: IoT integration cycle developed by Siemens

120

officials were concerned about the air pollution as a result of increased traffic which made
it difficult for the city to maintain recommended levels of nitrogen dioxide set by the World
Health Organization (Siemens, 2019). Siemens set up an IoT system that allowed it to
collect data such as air pollution levels, weather, and traffic patterns from sensors placed
around the city (Siemens, 2019). This data is then used to forecast the city’s air quality
for the next 5 days (Siemens, 2019). With this data, the city is able to take appropriate
measures to reduce air pollution levels. The Siemens City Air Management and the City
performance Tool is also able to conduction simulations and make long term predictions
factoring various parameters such as environmental legislature and new technology; they
are now able to make predictions until the year 2030 with remarkable accuracy (Siemens,
2019).

Another case were Siemens was able to utilize IoT was in the case of the Sello shopping
mall in Finland (Siemens, 2019). The shopping mall wanted to increase its energy
efficiency since it accommodates more than 24 million shopper every year. Siemens
engineers turned the mall into a “virtual power plant” and it was able to operate as a load
for the Finnish demand response markets (Siemens, 2019). 2 MW batteries were installed
with a solar panel system that included a microgrid with smart building automation and
cloud analytics (Siemens, 2019). The process took a few years using an iterative
approach and followed the five phases depicted in the diagram (Siemens, 2019). Sensors
were installed in the building management system that measured weather data, energy
consumption, energy price, weather forecast data and the amount of energy stored in the
battery (Siemens, 2019). By using smart analytics, an algorithm was designed to
determine whether energy should be drawn from the solar panels, the 2-MW battery
(stored energy), or the national energy provider when electricity rates are low (Siemens,
2019). This implementation helped reduce carbon emissions and saved the business
€643,000 ($690,00) (Siemens, 2019).

8.3.3.2.1. Siemens IoT implementation phases in F.I.R.E.

Interestingly, this project will adopt similar phases during its life cycle, which is an
important connection this project has to Siemens’ current IoT practices. In the initial
phase, this project underwent strategy development where the best method of fire
detections was investigated. This included identifying mechanisms and principles of
detection that are used in the industry. The challenges were also explored, such as range
and scalability during this phase. Most importantly was also determining how this project
provides a value not only for us, but also Siemens and how this project aligns with the
ambitions of the Siemens Foundation and the Siemens’s industry goals.

Once the idea was established, the technical implementation next stage is followed. As
mentioned, Siemens is our customer and they are at the center of our focus. Their
requirements are to create a solar powered forest fire detection and monitoring system
that will also be used as STEM kit to educate the youth on electrical engineering concepts,
and also how the technology and implementation relates to the industry. Another crucial
requirement is heeding their budget requirement of approximately $500. Furthermore, the
university (UCF) is also our customer because they are expecting a senior design project

121

that fulfils the criteria set by Accreditation Board of Engineering and Technology. Lastly,
this product has potential to be used in the industry, therefore government of countries
experiencing forest fires as well as the authorities that protect reservations that are likely
to experience forest fires are our unheard audience; we are able to interact with them
directly, however we have built our assumptions based on their experiences and the
technologies they have used for forest fire detection and past research.

By integrating these three audiences’ concerns, demands, and needs as well as our own
skills set and experience, we are able to identify a reasonably sound solution and initiate
the first prototype. The protype will be used to gather as much data possible; in this
project’s case once the sensors have been selected and are fully functional, the sensors
will begin accumulating temperature, humidity, pressure, gas concentration levels, smoke
and flame conditions. This historic data will be useful for mathematical and statistical
methods to determine an algorithm than assess various parameters and identify similar
patterns in the data set. Machine learning will be used to train the model and improve
prediction outcomes.

The third stage involved connecting, adapting, and integrating systems. The main
components in this process include the sensors, communication networks, cloud
infrastructure and IoT platforms and applications. In this process the data gathered from
the sensors can be send to other devices and the main hub which will house all the
database. The communication protocol becomes vital as it determines range, latency,
data volume, and transmission frequency. The F.I.R.E system uses RF communication
from the LoRa module which accounts for each of these factors. The database has yet to
be established for this project however the two options will mostly like be either premise-
based or cloud-based. Communication is vital however it is also important that the data
from the various sources are in a uniform language in order for it to be processed to a
device or cloud. Once the machine learning algorithms are able to model and predict the
data, the outcome will be presented in a visually clear manner for the user to understand.

The fourth stage used in Siemens IoT implementation which will be followed in project
F.I.R.E is analyzing the data. As mentioned, the data needs to be easy to read and
understand so that appropriate action can be taken with the information provided. In this
stage it is important to differentiate between correlation and causality. Correlation is a
statistical measure to observe the relationship between two variables; the relationship
can be random without grounds for a direct cause. As a result, correlation can produce
noise in the data which can lead to less accurate predictions and outcomes. Causality is
a relationship that describes the cause-effect connection. Therefore, during this stage is
important to interpret the data logically to avoid misrepresentation and to continually train
the system to improve and optimize models to avoid false-positive outcomes of a fire.

The final stage is operation. Once the system is operating successfully, it will be important
to maintain it regularly to avoid malfunctions. With respect to the F.I.R.E project, this
device will be handed off to Siemens to use for future STEM events potentially
manufacture more STEM kits in the future. To ensure proper maintenance and use is
observed, a guide will be provided with the step-by-step procedure of operating the

122

system and testing it under various conditions. This guide will be a combination of written
material and video tutorials to ensure it can be properly understood and avoid vague
rhetoric. It will be targeted towards Siemens engineers who will be conducting the
activities and will be responsible for maintaining the system’s operational standards.

8.3.3.3. Siemens Gamesa: Wind Turbines

In 2016, Siemens announced it would merge it wind businesses with Gamesa with a 59%-
41% split between the two shareholders (Siemens Gamesa, n.d.). Siemens Gamesa is
one of the leading manufacturers and suppliers in the world for wind turbines. Siemens
Gamesa have installed wind turbine technology in over 90 countries with base capacities
exceeding 99GW (Siemens Gamesa, n.d.). Siemens Gamesa’s businesses is primarily

focused in onshore and offshore wind turbines and service maintenance. They are
situated globally and also have an office in Orlando, FL.

Like gas turbines, wind turbines need to be maintained and protected to ensure optimal
performance. Gas turbines are more likely to catch fire because the nature of the fuel is
highly flammable (Froese, 2016). With wind turbines, although it is not powered by a
flammable source, the wind turbine system still needs to be designed with a fire detection
system since it is designed with various mechanical and electrical components where a
potential malfunction could start a fire (Froese, 2016). Most wind farms in isolated areas
and the possibility of a turbine being struck by lightning is also a concern. Earlier in
February 2020 there was a turbine rotor that caught fire in a wind farm in northeastern

Figure 84: Nacelle of a wind turbine where the AFFS is installed

123

Brazil; the turbine was a 2MW G97 Siemens Gamesa turbine (Spatuzza, 2020). Similarly,
a G80 2MW wind turbine caught fire in Japan in 2017 (Foster, 2017). The issue with fires
in wind turbines is they become difficult to save the turbine once it catches fire, especially
if the source of the fire is in the nacelle as shown in the figure (Froese, 2016). Repair
costs are very high and put technicians who must conduct the offshore repairs at risk of
injury or death (Froese, 2016). Most wind turbines include fire-protection products which
include circuit breakers, semiconductor protection fuses, differential current monitoring
devices, measuring instrumented for power monitoring, residual-current devices, and
busbars (Froese, 2016).
Graduated protection is also an additional measure taken to avoid turbine failures; this
includes disconnecting defective systems from the grid earlier on to avoid a fire from
igniting (Froese, 2016).

In 2014, Siemens Building Technologies Division announced it developed automatic fire-
extinguishing system for off-shore turbines and the new system would be installed at
Riffgat project in the German North Sea (Garus, 2013). The Active Fire Fighting System
(AFFS) works by detecting fires by reading sensor signals from the Advanced Signal
Analysis (ASA) fire detectors to alert the system of a fire in a nacelle or tower (Garus,
2013). The system then activates nitrogen gas to extinguish the fires, operating on
principles of oxygen displacement, using the Sinorix gas fire extinguishing system (Garus,
2013). The turbine is shut down until the fire is extinguished. An advantage to this system
is that it does not produce false alarms and low maintenance and resistant (Garus, 2013).
The added extinguishing feature prevents the fire from spreading nearby and reduces the
need for fire helicopters (Froese, 2016). Moreover, the operators can remotely access the
system and identify the source of the fire from the control station which will allow turbines
to resume activity as soon as possible. For added safety two AFFS systems are installed
in a turbine: in the nacelle and in the tower, both operate independently in the event of a
power failure or network outage. Currently, the AFFS system is in operation in 30 wind
turbines (Garus, 2013). Siemens was recognized as the first company to test and approve
a fire detection and extinguishing system for wind turbine equipment; it has been certified
by VdS Schadenverhütung GmbH and approved by Germanischer Lloyd (Garus, 2013).

124

Figure 85: ASA fire detectors by Siemens Figure 86: Sinorix fire extinguisher used by Siemens

Siemens AFFS fire detection and prevention system holds many similarities to our device.
The system uses a similar technique of installing sensors that read and process data of
the current conditions and an algorithm is then used to identify probably cases of a fire.
One distinguishing feature that the AFFS device has is that it is paired with an
extinguishing feature for swift prevention of the fire spreading (Garus, 2013). This feature
was a potential feature we had also considered but it was ruled out on the basis that the
extinguishing gasses could harm the wildlife, animals, and the forest environment. Thus,
it was decided that extinguishing the fire was outside the scope of this project and could
perhaps be further researched using drones. However, this difference is mainly attributed
to the fact that the intended purpose of the AFFS system is for wind turbines that typically
located in remote areas. This simply establishes the importance of recognizing the
planned purpose of the product and how it is integrated during the design and prototyping
process.

8.4. Estimated Cost

The table below, Table 16, is an estimated list of costs associated with our project. A
major target of this project is delivering a system that is cost effective while maintaining
product performance. Based on preliminary research and experience, an estimated cost
breakdown was prepared. The data included in Table 3 is a rough cost estimate on items
that we believe could be implemented or critical to the system. The system will be
composed of 3 to 4 devices that will communicate data with each other. Thus, the cost
below illustrates the total cost of designing and implementing a system with multiple
devices.

The table acts as a guide to see the general cost for the system and initial plan. Cost is
determined by the distributor price when purchasing a single item, not in bulk. As we
progress further into the project, potential areas to cut cost will become apparent through

125

careful research, design, and testing. The total cost below does not take into account the
cost of thermal camera/sensor array.

Table 16: Estimated Cost

Item Estimated Cost ($)

Solar Panel System 100

Sensors*

Gas sensors 50

Infrared sensors (flame detection) 50

Particle sensors (smoke detection) 20

Thermal Camera / Sensor Array 200

Temperature 1

Humidity 1

Electronics*^

Controller 20

General components
(resistor, capacitors, inductors, connectors) ^

30

Specialized components
(voltage regulation, MPPT, radio frequency) ^

30

PCB Manufacturing*^ 60

Prototype
(machine shop labor if applicable)

80

Development kit (for software)^ 30

Miscellaneous (solder and jumper wires) 40

Total Cost** ≈ $500.00***

* Shipping not included in cost approximation.
** Assuming one of each was purchased and each is used in the final design. Some items in
this list may not be used.
*** Cost does not include thermal camera.

^This item is not necessarily inclusive, i.e. it does not include administrative or other cost.

126

Appendix A: Sponsor Branding Approval

127

Appendix B: References
Abadi, n., Agarwal, A., Barham, P., Brevdo, E., Chen, Z., Citro, C., . . . Zheng, X. (2015).

TensorFlow. Retrieved from TensorFlow: https://www.tensorflow.org/lite
Alkhatib, A. A. (2017, Dec. 20). Forest Fire Monitoring. Retrieved Jan. 30, 2020, from

https://www.intechopen.com/books/forest-fire/forest-fire-monitoring
Arduino fire alarm system using temperature and smoke sensor with Android connectivity.

(n.d.). (Microelectronics Technologies) Retrieved Mar. 4, 2020, from
https://www.projectsof8051.com/arduino-fire-alarm-system-using-temperature-and-
smoke-sensor-with-android-connectivity/

Aslan, Y. E., Korpeoglu, I., & Ulusoy, Ö. (2012, Nov.). A framework for use of wireless sensor
networks in forest fire detection and monitoring. Retrieved Jan. 30, 2020, from
https://doi.org/10.1016/j.compenvurbsys.2012.03.002

ASQ. (2020). House of Quality Tutorial - How to Fill Out a House of Quality | ASQ. Retrieved
from https://asq.org/quality-resources/house-of-quality

Bluetooth. (2020). Understanding Bluetooth Range. Retrieved Jan. 30, 2020, from
https://www.bluetooth.com/learn-about-bluetooth/bluetooth-technology/range/

Bosch. (n.d.). Low Power Gas, Pressure, Temperature and Humidity Sensor. Retrieved April 1,
2020, from https://cdn-shop.adafruit.com/product-files/3660/BME680.pdf

Bouckaert, S., Poorter, E. D., Mil, P. D., Moerman, I., & Demeester, P. (2009). Interconnecting
Wireless Sensor and Wireless Mesh Networks: Challenges and Strategies. Retrieved Jan.
30, 2020, from https://ieeexplore.ieee.org/abstract/document/5425861

De-Chang, W., Cui, X., Park, E., & Jin, C. (2013, Oct.). Adaptive flame detection using
randomness testing and robust features. Retrieved Mar. 19, 2020, from
https://www.researchgate.net/publication/257410367_Adaptive_flame_detection_usin
g_randomness_testing_and_robust_features

Deshmukh, A., Breckon, T., & Dunnings, A. (2019, Dec 19). fire detection cnn. Retrieved April 18,
2020, from https://github.com/tobybreckon/fire-detection-cnn

Designer, A. (2018, 2 16). Embedded RF Design: Ceramic Chip Antennas vs. PCB Trace Antennas.
(Altium Designer) Retrieved from https://resources.altium.com/p/embedded-rf-design-
ceramic-chip-antennas-vs-pcb-trace-antennas

Donovan, J. (2012, 11 08). Selecting Antennas for Embedded Designs. (Convergence Promotions
LLC) Retrieved from https://www.digikey.com/en/articles/selecting-antennas-for-
embedded-designs

Dunnings, A. J., & Breckon, T. P. (n.d.). EXPERIMENTALLY DEFINED CONVOLUTIONAL NEURAL
NETWORK ARCHITECTURE VARIANTS FOR NON-TEMPORAL REAL-TIME FIRE DETECTION.
Retrieved April 18, 2020, from
https://breckon.org/toby/publications/papers/dunnings18fire.pdf

Edje, E. (2019, Oct. 19). Tutorial to set up TensorFlow Object Detection API on the Raspberry Pi.
Retrieved Feb. 28, 2020, from https://github.com/EdjeElectronics/TensorFlow-Object-
Detection-on-the-Raspberry-Pi/blob/master/README.md

Electronic Code of Federal Regulations. (1996, May 28). e-CFR. Retrieved March 17, 2020, from
https://www.ecfr.gov/cgi-bin/text-

128

idx?SID=7248d37fdd25d0947f5611197fd5c6c8&mc=true&node=se47.5.101_1113&rgn=
div8

Errynando Surya Sasmita, M. R. (2018). Integrating Forest Fire Detection with Wireless Sensor
Network Based on Long Range Radio. The 2018 International Conference on Control,
Electronics, Renewable Energy and Communications. Bandung.

Fonollosa, J., Solorzano, A., & Marco, S. (2018). Chemical Sensor Systems and Associated
Algorithms for Fire Detection: A Review. Retrieved Jan. 30, 2020, from
https://www.mdpi.com/1424-8220/18/2/553

Foster, M. (2017, August 22). Gamesa turbine catches fire in Japan. Retrieved April 18, 2020,
from https://www.windpowermonthly.com/article/1442624/gamesa-turbine-catches-
fire-japan

Frenzel, L. E. (2008, Aug. 13). Welcome To Antennas 101. (Electronic Design) Retrieved March
12, 2020, from
https://www.electronicdesign.com/technologies/passives/article/21769333/welcome-
to-antennas-101

Friis, H. (1946). A Note on a Simple Transmission Formula. IRE Proc.: 254–256.
Froese, M. (2016, June 24). Fire prevention and protection for wind turbines offshore and on.

Retrieved April 18, 2020, from https://www.windpowerengineering.com/fire-
prevention-protection-wind-turbines-offshore/

Garus, K. (2013, July 23). Siemens' fire detection and extinguishing system is certified. Retrieved
April 18, 2020, from Offshore Wind Industry:
https://www.offshorewindindustry.com/news/siemens-fire-detection-and-extinguishing

Gaur, A., Singh, A., Kumar, A., Kulkarni, K. S., Lala, S., Kapoor, K., . . . Mukhopadhyay, S. C. (2019,
May 1). Fire Sensing Technologies: A Review. Retrieved Mar. 19, 2020, from
https://ieeexplore.ieee.org/document/8625538

Ghoslya, S. (n.d.). LoRa: Symbol Generation. Retrieved from https://www.sghoslya.com/p/lora-
is-chirp-spread-spectrum.html

Howard, A., Sandler, M., Chu, G., Chen, L.-C., Chen, B., Tan, M., . . . Adam, H. (2019, May 6).
Searching for MobileNetV3. Retrieved Feb. 28, 2020, from
https://arxiv.org/abs/1905.02244

IEEE. (2018). Integrating Forest Fire Detection with Wireless Sensor Network Based on Long
Range Radio. (2018 International Conference on Control, Electronics, Renewable Energy
and Communications (ICCEREC)) Retrieved Jan. 30, 2020, from
https://ieeexplore.ieee.org/abstract/document/8711991

IEEE Std 145-1993(R2004). (1993). IEEE Standard Definitions of Terms for Antennas. New York,
NY: The Institute of Electrical and Electronics Engineers.

IPC-2221. (1998, Feb.). Generic Standard on Printed Board Design. Retrieved March 5, 2020,
from http://www.ipc.org/TOC/IPC-2221.pdf

Isiadinso, C. (2015, November 24). TEMPERATURE, PRESSURE, & SPEED SENSING SYSTEMS OF A
GAS TURBINE FIRST STAGE ROTOR BLADE. Sensor Systems, p. 2015.

Jamestown Distributors. (n.d.). Kevlar Cloth - Plain Weave. Retrieved March 18, 2020, from
https://www.jamestowndistributors.com/userportal/show_product.do?pid=4022

Jurvélius, M. (2003). FOREST FIRES AND INTERNATIONAL ACTION. Retrieved Jan. 30, 2020, from
http://www.fao.org/3/XII/0820-B3.htm

129

Kathuria, A. (2018, Apr. 16). How to implement a YOLO (v3) object detector from scratch in
PyTorch: Part 1. (PaperspaceBlog) Retrieved Feb. 27, 2020, from
https://blog.paperspace.com/how-to-implement-a-yolo-object-detector-in-pytorch/

Keras. (n.d.). Keras: The Python Deep Learning library. Retrieved Feb. 29, 2020, from
https://keras.io/

LEE, J. M. (2020, January 14). Fighting Fire with Fire: How Controlled Burns Keep Us Safe.
Retrieved April 10, 2020, from https://www.ucf.edu/news/fighting-fire-with-fire/

Leens, F. (2009, Feb.). An introduction to I2C and SPI protocols. Retrieved Jan. 30, 2020, from
https://ieeexplore-ieee-org.ezproxy.net.ucf.edu/document/4762946

Legal Information Institute. (2020). 47 CFR § 15.209 - Radiated emission limits; general
requirements. Retrieved March 10, 2020, from
https://www.law.cornell.edu/cfr/text/47/15.209

Leng, F., Tan, C. M., & Pecht, M. (2015, Aug 6). Effect of Temperature on the Aging rate of Li Ion
Battery Operating above Room Temperature. Retrieved April 16, 2020, from
https://www.nature.com/articles/srep12967

Liqiang Wang, M. Y. (2011). Hybrid fire detection using hidden Markov model and luminance
map. Computers and Electrical Engineering, 37, 905-915.

Melexis. (2012). MLX90640 32x24 IR array. Retrieved April 1, 2020, from
https://www.melexis.com/en/documents/documentation/datasheets/datasheet-
mlx90640

Mordvintsev, A., & K., A. (2013). OpenCV-Python Tutorials. Retrieved Feb. 29, 2020, from
https://opencv-python-
tutroals.readthedocs.io/en/latest/py_tutorials/py_video/py_lucas_kanade/py_lucas_ka
nade.html

Nancy H Ulerich, G. K. (2013). CONDITION BASED MONITORING OF GAS TURBINE COMBUSTION
COMPONENTS. Orlando, Waltham, San Antonio: Siemens Energy, Inc., Jenetek Sensors,
Inc., K Science, GP LLC.

Noci, J. (2020). Antenna Design Overview — Copter documentation. (Ardupilot.org) Retrieved
March 10, 2020, from https://ardupilot.org/copter/docs/common-antenna-design.html

Nörthemann, K., Bienge, J.-E., Müller, J., & Moritz, W. (2013, Nov. 1). Early forest fire detection
using low-energy hydrogen sensors. Retrieved Jan. 30, 2020, from
https://pdfs.semanticscholar.org/b807/d5144095c15f7805fd272cb71a8a023a9516.pdf

OpenCV. (2020, April 18). Open Source Computer Vision. Retrieved April 18, 2020, from
https://docs.opencv.org/3.4/df/d6c/group__ximgproc__superpixel.html

Ott, H. W. (2001, Feb. 14). Henry Ott Consultants. Retrieved March 8, 2020, from
http://www.hottconsultants.com/techtips/freq-wavelength.html

Ouni, S., Ayoub, Z. T., & Kamoun, F. (2019, Jan. 16). Auto-organization approach with adaptive
frame periods for IEEE 802.15.4/zigbee forest fire detection system. Retrieved Jan. 30,
2020, from https://doi.org/10.1007/s11276-018-01936-x

PyTorch. (n.d.). PyTorch: From Reasearch to Production. Retrieved from PyTorch:
https://pytorch.org/

RAITHATHA, M. H. (2013). SIEMENS-UV OPTICAL FLAME DETECTION. Berkley: College of
Engineering University of California.

130

Redmon, J. (2018). YOLO: Real-Time Object Detection. (arXiv) Retrieved Feb. 27, 2020, from
https://pjreddie.com/darknet/yolo/

Redmon, J., & Farhadi, A. (2018). YOLOv3: An Incremental Improvement. Ithaca, New York:
Cornell University.

Ren, S., He, K., Girshick, R., & Sun, J. (2016). Faster R-CNN: Towards Real-Time Object Detection
with Region Proposal Networks. Ithica, New York: Cornell University.

RF Wireless World. (n.d.). Smoke Detector basics | Smoke Detector types. Retrieved Mar. 19,
2020, from https://www.rfwireless-world.com/Articles/smoke-detector-basics-and-
smoke-detector-types.html

RoHS. (2005). RoHS Guide. Retrieved Mar. 4, 2020, from https://rohsguide.com/rohs-faq.htm
Rouse, M. (2020, 2). internet of things (IoT). (TechTarget) Retrieved from

https://internetofthingsagenda.techtarget.com/definition/Internet-of-Things-IoT
Roy, S. S. (2018, Oct. 23). Real-Time Object Detection on Raspberry Pi Using OpenCV DNN.

Retrieved Feb. 28, 2020, from https://heartbeat.fritz.ai/real-time-object-detection-on-
raspberry-pi-using-opencv-dnn-98827255fa60

Sandler, M. (2019, Nov. 12). MobileNet. Retrieved Feb. 28, 2020, from
https://github.com/tensorflow/models/blob/master/research/slim/nets/mobilenet/REA
DME.md

ScienceDirect. (n.d.). Kevlar. Retrieved April 1, 2020, from
https://www.sciencedirect.com/topics/engineering/kevlar

Semtech. (2015). AN1200.22 LRa Modulation Basics. Camarillo, CA: Semtech.
Siemens. (2019). Siemens Gas Turbines. Retrieved April 18, 2020, from

https://assets.new.siemens.com/siemens/assets/api/uuid:10f4860b140b2456f05d3262
9d8d758dc00bcc30/gas-turbines-siemens-interactive.pdf

Siemens. (2019, April 1). Siemens IOT Assest . Retrieved April 18, 2020, from
https://assets.new.siemens.com/siemens/assets/api/uuid:131ac2f9-5e8b-4968-ba2f-
734eefccdb50/version:1556633115/turning-iot-into-reality-whitepaper-by-siemens-iot-
services-fina.pdf

Siemens AG. (2019). Siemens Assets. Retrieved April 18, 2020, from
https://assets.new.siemens.com/siemens/assets/api/uuid:d9283b58-4f74-4f05-a8fb-
0ccf0439ee82/version:1557162462/sgt-a05-service-solutions-2019.pdf

Siemens Gamesa. (n.d.). Siemens Games Renewable Energy. Retrieved April 18, 2020, from
https://www.siemensgamesa.com/en-int/about-us

Siemens STEM Day. (n.d.). Siemens Stem Day. Retrieved April 18, 2020, from
http://www.siemensstemday.com/

Smith, P. (2014, February 17). Siemens develops automatic offshore fire-fighting system.
Retrieved April 18, 2020, from Wind Power Monthly:
https://www.windpowermonthly.com/article/1281184/siemens-develops-automatic-
offshore-fire-fighting-system

Spatuzza, A. (2020, February 3). Recharge News. Retrieved April 18, 2020, from
https://www.rechargenews.com/wind/siemens-gamesa-investigates-after-wind-
turbine-rotor-crash-in-brazil/2-1-749505

131

Syed, Z. A. (2016, Sept.). Frequency, Range and type of Wireless Communication. NSA,
University of Oslo. Retrieved from https://its-
wiki.no/images/3/3f/Frequency_range_Zyyad.pdf

Tan, J. (2019, Sept. 29). How to Choose Battery for Your Emergency Lighting Wisely? Retrieved
from Sanforce: www.sanforce-tech.com/how-to-choose-suitable-battery-emergency-
lighting-wisely/

This Plastic’s on Fire! 4 Types of Flame Retardant Plastic Additives. (n.d.). (Craftech Industries)
Retrieved April 1, 2020, from https://www.craftechind.com/this-plastics-on-fire-4-types-
of-flame-retardant-plastic-additives/

True, N. (n.d.). Computer Vision Based Fire Detection. La Jolla, CA: University of California.
United Nations Enviroment Programme. (2020, Jan. 3). Governments, smart data and wildfires:

where are we at? Retrieved Jan. 30, 2020, from https://www.unenvironment.org/news-
and-stories/story/governments-smart-data-and-wildfires-where-are-we

WallpaperAccess. (n.d.). Carbon Fiber. Retrieved March 18, 2020, from
https://wallpaperaccess.com/carbon-fiber

Xu, X. (2018, Aug. 10). Everitt's blog. (github) Retrieved Feb. 27, 2020, from
https://everitt257.github.io/post/2018/08/10/object_detection.html

Yu, C., Mei, Z., & Zhang, X. (2013, Aug. 14). A Real-time Video Fire Flame and Smoke Detection
Algorithm. Retrieved Feb. 28, 2020, from
https://www.sciencedirect.com/science/article/pii/S1877705813013222

Zhao, T. X.-P., Acherman, S., & Wei, G. (2010, Oct.). Dust and Smoke Detection for Multi-
Channel Imagers. Retrieved March 19, 2020, from
https://www.researchgate.net/publication/47380702_Dust_and_Smoke_Detection_for
_Multi-Channel_Imagers

Zima, D. (2020). Lora Best Design Practices EMC Compliance. Lora Workshop, UCF. Orlando.
Retrieved from
https://info.semtech.com/hubfs/RF%20Laboratories%202020%20UCF%20Workshop.pdf
?utm_campaign=LoRa%20Boot%20Camps&utm_source=hs_email&utm_medium=email
&utm_content=84057861&_hsenc=p2ANqtz-9DugGP-
dmBjbpSMsTi9Ujxg9YtKcFV7fWKsulexvk7jHn4c0SP4JY6jja1MA4CO3Jvrr-3jZ

